## Development of a Multiplexing platform for Molecular Glue Drug Discovery of Disease-Relevant High Value Undruggable Targets



# Molecular-Glue Discovery & Development Team

#### EST. 2019

### Heng Zhu, Ph.D.

Professor of Pharmacology and Molecular Sciences **Expertise:** Targeted protein screening technology development 20+ years experience.



### Seth S. Margolis, Ph.D.

Associate Professor of Biological Chemistry Associate Professor of Neuroscience **Expertise:** Targeted protein degradation in the central and peripheral mammalian nervous system in health and disease 15+ years experience



## **Seeking Strategic Partner to Commercialize Technology**

We seek a strategic partnership to help advance and commercialize the molecular glue technology and resulting therapeutics, through sponsored research and/or venture backed start-up



# **Targeted Protein Degradation**: A new drug

modality that uses the UPS.



#### Key points & advantages:

- **1)** Hijack the normal cellular degradation machinery (UPS) to destroy a target protein in a specific manner.
- 2) Expands the druggable proteome to non-enzymatic proteins and those enzymes that have been deemed undruggable.
- **3)** Potential inducible protein-protein interactions is very large....Requires high content multiplexing.
- **4)** Surface area of protein allows for greatly increased drug target space.

# High-throughput Molecular Glue Discovery & Development: Our Technology

### Key points & advantages:

- **1)** We have developed a high-throughput, <u>multiplex assay</u> to screen compound library against high-value disease targets that have previously been considered undruggable.
- 2) Increases rate of discovery of specific non-overlapping compounds.
- 3) Small scale reduces cost at the level of reagents and requirement for FTE.
- 4) A highly flexible system, allowing mix and match multiple targets vs. degraders.
- 5) From set up to identification we anticipate a single week by one person and minimal reagents. Lead compounds ID < 3 months.
- 6) Lead compounds are refined, validated and screened in whole cell and then preclinical animal models.
- 7) \*Adaptable to identify Molecular Glue degraders as well as Molecular Glue binders (another important capability for this tech)
- 8) \*Easy to automate and scalable to hundreds of targets at once.



## **Technology Rationale**



- IMIDs act as molecular glues forming a ternary complexes between the ubiquitin ligase Cereblon (CBRN) and the targets IKZF1/3
- The close proximity of the CRBN and IKZF1/3 in the presence of IMIDs produces a signal
- IMIDs do not form a ternary complex between CRBN and GST

– no signal

## Human proteome expression & purification: Making functional targets and degraders

**Protein Purification** 





JHU ASSET: > 20,000 human proteins to choose from JHU CAPABILITIES: Purifying limitless quantities of human E3's and target proteins



## **PHASE A.1** – Purified known target proteins

|                                  | IKZF1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IKZF3         | CRBN                   | BSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | Protein         | M.W.  | Yield (µg) | pmol   |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------|-------|------------|--------|
|                                  | 1 2 3 4 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 678           | 9 10 11 12             | 13 14 15 16 17 18 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1  | IKZF1           | 78.71 | 24.95      | 316.97 |
| 10                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nnn           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2  | IKZF1           | 78.71 | 17.61      | 223.74 |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3  | IKZF1           | 78.71 | 26.90      | 341.83 |
|                                  | A SALAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4  | IKZF1           | 78.71 | 39.95      | 507.56 |
| KD                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6 7 9         | and the lot of         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5  | IKZF3           | 84.02 | 10.37      | 123.42 |
| 190 <b>—</b> 1<br>115 <b>—</b> 1 | 1 <u>2</u> <u>3</u> <u>4</u> <u>5</u><br>1530 <u>10801650</u> 2450 <u>63</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 631802070159c | <u>     18 14 15</u> 1 | 6 17 18 19 20 21 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6  | IKZF3           | 84.02 | 51.85      | 617.10 |
| 80                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | 0901080798190          | 9.4 214 426 760 147025605420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7  | IKZF3           | 84.02 | 33.75      | 401.70 |
| 70                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8  | IKZF3           | 84.02 | 25.92      | 308.55 |
| 50                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9  | CRBN            | 76.55 | 60.17      | 786.02 |
| 50                               | REPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 日日日           |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 | CRBN            | 76.55 | 32.28      | 421.77 |
| 30                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11 | CRBN            | 76.55 | 13.01      | 169.98 |
| 25                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12 | CRBN            | 76.55 | 19.40      | 253.49 |
| 25                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                        | and a state of the | 13 | BSA (0.03125ug) | 66.46 | 0.031      | 0.470  |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                        | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14 | BSA (0.0625ug)  | 66.46 | 0.063      | 0.94   |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15 | BSA (0.125ug)   | 66.46 | 0.125      | 1.89   |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                        | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16 | BSA (0.25ug)    | 66.46 | 0.25       | 3.76   |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17 | BSA (0.5ug)     | 66.46 | 0.5        | 7.523  |
| - 11                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18 | BSA (1ug)       | 66.46 | 1.0        | 15.05  |
|                                  | and the second sec |               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19 | BSA (2ug)       | 66.46 | 2.0        | 30.10  |



## **PHASE A.2** – Assessed known CRBN/IMID interactions



JHU CAPABILITIES: MG discovery assay with several key features:

- Single well all-in-all multiplexing
- High resolution and specific substrate discrimination
- High resolution and selective discrimination of IMID Interactions



# **PHASE A.3** – Optimized multiplexing: CRBN mixed with IKZF1, IKZF3, CSNK1A1 & GST



#### **JHU CAPABILITIES**: Key features determined in optimization:

- Target preference (IKZF1/3 > CSNK1A) detected, an advantage of all-in-all format
- Cost-effective Protein concentrations pushed down to low nM
- Ternary complex not likely affected by MG concentration, avoiding hook effect



## PHASE A.4 – Reduced to 1ml reaction volume using Echo 650



#### JHU CAPABILITIES: Key features in automation:

- Low reaction volume and sample consumption
- Amenable to 384-well format
- High signal-to-noise ratio maintained
- Feasible for HT drug screening



## **PHASE B** – HT novel MG discovery & optimization





# **PHASE B.1** – Purified E3 ligases and disease target proteins (Cancer & Neurodegeneration)

## **PHASE B.2** – HT MG screening pipeline



**PHASE C** – Analyzed data to identify compounds that mediate specific ternary complexes (~3 months from start to Phase C)



JOHNS HOPKINS TECHNOLOGY VENTURES In each well we examined 378 (=14 ligases X 27 target proteins) combinations against a mini pool of 8 compounds. Therefore, we surveyed 472,500 events in total (=378 X (10k/8)).

## SUMMARY

- **Phase A:** Accomplished the POC of detecting MG-dependent ternary complex formation
- **Phase B:** Developed and optimized a highly multiplexed, HT screening pipeline for searching MGs
- **Phase C:** Identified novel MGs for specific E3-target pairs
- **Phase D:** Validate compounds



## **Next Steps**

### Establish strategic partnership with investors and/or corporate partners

## In the pipe-line

- Using our proprietary approaches we will prioritize each well with a unique ternary complex formation
- Deconvolute wells to identify specific compound
- Perform high content degrader screen for each hit compound and ligase/substrate pair.

## **Medium-term goals**

- Identify new lead compounds for strategic partners interested in specific targets (can start immediately)
- Establish New-co to bring new degraders to clinical use (**investment needed**)
  - High value compounds will be further tested in respective disease models.
  - Quantitative proteomics will be used to assess target destruction in vivo.
  - Possible need for SAR to proceed with hits.



# Appendix



# The Ubiquitin Proteasome System (UPS) degrades proteins in all mammalian cells.

2 Major Steps:

Key Players highlighted yellow:







## **Targeted Protein Degradation**: PROTAC vs Molecular Glue



#### **PROTAC** are the current hot market.

- They are bi-functional Molecular-Glues.
- They are large and bulky.
- They take many steps to develop.
- Long lead time to realization of specificity and effectiveness.
- Expensive

#### **Molecular Glue.**

- Single bi-functional compound.
- They are small with better PK/PD.
- Better cell penetration.
- They require assays to to detect the ternary complex (Target-Glue-Degrader E3)
- No one has developed such an assay until Now!



# The molecular glue space is very large...High content multiplex platforms are essential

### **Protein – protein interactions**

- Number of proteins: ~100,000
- Known protein interactions: ~130,000 and 600,000
- Possible interactions: 5 X 10<sup>9</sup>

### **Targeting surface area of proteins**

- Radius of average protein: ~2.6 nm
- Surface area average protein: ~85 nm<sup>2</sup>
- Average size of small molecule: 1 nm

