DELIVERY AND SPATIAL OMICS Faculty Profiles

JOHNS HOPKINS: A HUB FOR RNA INNOVATION

With world-renowned faculty specializing in gene therapy delivery and editing technologies, Johns Hopkins is uniquely positioned as a hub for RNA innovation.

JHU INSTITUTES & DEPARTMENTS

- Institute of NanoBioTechnology (INBT)
- Biomaterials and Drug Delivery Laboratory
- Department of Genetic Medicine

Source: https://hub.jhu.edu/2022/08/23/gene-medicine-delivery-faster-affordable/

NEW PLATFORM COULD MAKE GENE MEDICINE DELIVERY EASIER AND MORE AFFORDABLE

A new platform designed by Hopkins researchers, in partnership with the University of Washington, shows promise in the sped up design of lipid nanoparticles to deliver treatments that prevent viral infections

HAI-QUON MAO, PHD

Mao Lab Website **Mao Lab Publications Mao's Patents**

Professor, Department of Materials Science and Engineering; Director, Institute of NanoBioTechnology (INBT)

AREAS OF SPECIALIZATION

Biomaterials, therapeutic delivery, regenerative, engineering, and immunoengineering.

SUMMARY OF WORK

Dr. Mao's work focuses on developing novel biomaterials for therapeutic delivery through therapeutic engineering, regenerative engineering, and immunoengineering.

CURRENT PROJECTS

- scalable manufacturing for delivery of biologic therapeutics

 Kinetically controlled polyelectrolyte nanoparticle assembly and its Engineering polycation- and lipid-based non-viral nanoparticles for delivery of nucleic acid therapeutics via systemic, local, or oral administration

HAI-QUON MAO, PHD

- Payload distribution and capacity of mRNA lipid nanoparticles.
- Multi-step screening of DNA/lipid nanoparticles and co-delivery with siRNA to enhance and prolong gene expression.
- <u>Quaternary nanoparticles enable sustained release of bortezomib for</u> <u>hepatocellular carcinoma.</u>
- Size-Controlled and Shelf-Stable DNA Particles for Production of Lentiviral Vectors.
- Scalable Purification of Plasmid DNA Nanoparticles by Tangential Flow Filtration for Systemic Delivery.
- Flash technology-based self-assembly in nanoformulation: from fabrication to biomedical applications.
- Surface-Functionalized PEGylated Nanoparticles Deliver Messenger RNA to Pulmonary Immune Cells.

JOHN LING, PHD

Ling's Website Ling's Publications Ling's Patents

Assistant Professor of Pathology

AREAS OF SPECIALIZATION

therapy, bioinformatics.

SUMMARY OF WORK

Dr. Ling's research employs large-scale computational analyses of nextgeneration sequencing data to identify novel disease mechanisms, including splicing-based mechanisms, with the goal of translating these discoveries to the clinic.

LICENSABLE TECHNOLOGIES

- Motor Neuron

RNA splicing, therapeutics, neuropathology, genetic engineering, gene

– Method for using alternative splicing to control specificity of gene therapy - Target Validation of Splicing Repression, a Major Function of TDP-43 in the

JOHN LING, PHD

- Payload distribution and capacity of mRNA lipid nanoparticles. - <u>Cell-specific regulation of gene expression using splicing-dependent</u>
- frameshifting.
- ASCOT identifies key regulators of neuronal subtype-specific RNA splicing. - Splicing repression is a major function of TDP-43 in motor neurons.
- Recount3: summaries and queries for large-scale RNA-seq expression and splicing.

SARAH WOODSON, PHD

T.C. Jenkins Professor of Biophysics at Johns Hopkins University

AREAS OF SPECIALIZATION RNA folding, RNA dynamics, small regulatory RNAs, and ribosome assembly.

SUMMARY OF WORK

Dr. Woodson's research studies how RNA molecules fold into specific threedimensional structures and how the RNA and proteins components of cellular complexes come together.

CURRENT PROJECTS - INVESTIGATING

- How conditions inside the cell alter the way the RNA folds.
- How new structures arise as the RNA sequence evolves.
- pairing with a target.

Woodson Lab Website

Woodson Lab Publications

How small, non-coding RNAs (sRNA) and RNA chaperones act by base

– Messenger RNA, decreasing or increasing translation of the target gene.

SARAH WOODSON, PHD

- <u>Small RNAs and Hfq capture unfolded RNA target sites during</u> transcription.
- <u>Direct observation of RNA structure and dynamics in repeat-RNA</u> <u>assemblies using single molecule fluorescence microscopy.</u>
- Ribosomes clear the way for siRNA targeting.
- <u>RNA toxicity and perturbation of rRNA processing in spinocerebellar</u> <u>ataxia type 2.</u>
- <u>Single-molecule FRET studies of RNA structural rearrangements and</u> <u>RNA-RNA interactions.</u>
- Intrinsically disordered interaction network in an RNA chaperone revealed by native mass spectrometry.

GREGORY NEWBY, PHD

Assistant Professor of Genetic Medicine

AREAS OF SPECIALIZATION

Genome editing, base editing, molecular medicine, CRISPR-Cas9

SUMMARY OF WORK

Dr. Newby's research has been foundational to developing CRISPR-Cas9 base editing and prime editing. His current work focuses on using efficient genome editing tools to re-wire regulatory elements surrounding disease-associated genes and form the basis of new therapeutics.

Newby Lab Website Newby Lab Publications

GREGORY NEWBY, PHD

- Efficient prime editing in mouse brain, liver and heart with dual AAVs.
 Shuttle Peptide Delivers Base Editor RNPs to Rhesus Monkey Airway
- Shuttle Peptide Delivers Base Ed Epithelial Cells In Vivo.
- <u>Protospacer modification improves base editing of a canonical splice site</u> variant and recovery of CFTR function in human airway epithelial cells.
- <u>Cas9-based diagnostic assay and methods of using.</u>
- Nonviral base editing of KCNJ13 mutation preserves vision in a model of inherited retinal channelopathy.
- Adenine base editors and uses thereof.

JOSHUA MODELL, PHD

Assistant Professor of Molecular Biology and Genetics

AREAS OF SPECIALIZATION

CRISPR-Cas9 systems

SUMMARY OF WORK

Dr. Modell's work synthesizes genetic, genomic and cellular analyses to better understand the basic biology of CRISPR systems and to inform the next generation of CRISPR-based technologies.

Modell Lab Website Modell Lab Publications

JOSHUA MODELL, PHD

PUBLICATIONS

- expression.
- adaptive immunity.
- generation of escape mutations.

– <u>A natural single-guide RNA repurposes Cas9 to autoregulate CRISPR-Cas</u>

- <u>CRISPR-Cas systems exploit viral DNA injection to establish and maintain</u>

-<u>Viral recombination systems limit CRISPR-Cas targeting through the</u>