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INTRODUCTION: New therapies have been de-
signed to stimulate the host’s immune sys-
tem to fight cancer. Despite these exciting,
recent successes, a large proportion of patients
still do not respond to anti–programmed cell
death-1 (PD-1) or anti–programmed death
ligand-1 (PD-L1) therapies, and thus, biomark-
ers for patient selection are highly desirable.
The only U.S. Food and Drug Administration–
approved histopathology biomarker tests for
anti–PD-1 or anti–PD-L1 therapy is assess-
ment of PD-L1 protein expression by means of
immunohistochemistry. This approach is uni-
dimensional and has limitations. Innovative
characterizationof the tumormicroenvironment
(TME) with a focus onmultidimensional, spa-
tially resolved interactions at the single-cell level
will provide critical mechanistic insights into
therapeutic responses and potentially identify
improvedbiomarkers for patient selection.Using
multispectral approaches to image the TME
and substituting cells for stars and galaxies, we
applied the methodology and infrastructure
developed for astronomy to pathologic analy-
sis of specimens frompatientswithmelanoma.

RATIONALE: The next generation of pathologic
analyses will require platforms that can char-
acterize the coexpression of key molecules on
specific cellular subsets in situ and spatial re-
lationships between tumor cells and multiple
immune elements. To that aim, we applied
astronomical algorithms for high-quality im-
aging and the establishment of relational data-
bases to multiplex immunofluorescence (mIF)
labeling of pathology specimens, facilitat-
ing spatial analyses and immunoarchitectural
characterization of the host-tumor interface.
In all, we curated and coordinately mapped
six markers, both individually and in combi-
nation in tumor tissue from 98 patients with
melanoma receiving anti–PD-1 therapy. This
dataset comprised ~127,400 image mosaics
composed of more than 100 million single
cells. The data outputs were linked to patient
outcomes, informing in a clinically relevant

way how cancer evades the immune system
and potentiating biomarker assay develop-
ment for precision immunotherapy.

RESULTS: The imaging protocols used in this
study were used to address outstanding ques-
tions regarding the impact of high-power field
sampling strategies on biomarker performance.
This information was then used to develop an
approach for operator-independent field selec-
tion. The image handling strategies also facili-
tated the robust assessment of the intensity
of PD-1 and PD-L1 expression in situ (nega-
tive, low,mid, and high levels) on different cell
types. Thus, with only six markers (PD-1, PD-
L1, CD8, FoxP3, CD163, and Sox10/S100), we
were able to develop 41 combinations of ex-
pression patterns for these molecules and
map relatively rare cells such as CD8+FoxP3+

cells to the tumor stromal boundary. More-
over, a high density of CD8+FoxP3+PD-1low/mid

cells was closely associated with response to
PD-1 blockade. Cell types associatedwith a lack
of response to therapy were also identified—
for example, CD163+ macrophages that were
PD-L1–. This latter phenotype was also found
to have a negative effect on long-term survival.
When these and other key cell phenotype den-
sities were combined, they were highly pre-
dictive of objective response and stratified
long-term patient outcomes after anti–PD-
1–based therapies in both a discovery cohort
and an independent validation cohort.

CONCLUSION:Here, we present the AstroPath
platform, an end-to-end pathology workflow
with rigorous quality control for creating quan-
titative, spatially resolved mIF datasets. Al-
though the current effort focused on a six-plex
mIF assay, the principles described here pro-
vide a general framework for the development
of any multiplex assay with single-cell image
resolution. Such approacheswill vastly improve
the standardization and scalability of these
technologies, enabling cross-site and cross-
study comparisons. This will be essential for

multiplex imaging technologies to realize their
potential as biomarker discovery platforms
and ultimately as standard diagnostic tests
for clinical therapeutic decision-making.▪
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SDSS telescope Multispectral microscope
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Segmentation Segmentation

Data warehouse

Strong parallels between multispectral analyses
in astronomy and emerging multiplexing
platforms for pathology. The next generation of
tissue-based biomarkers are likely to be identified by
use of large, well-curated datasets. To that end,
image analysis approaches originally developed for
astronomy were applied to pathology specimens to
produce trillions of pixels of robust tissue imaging
data and facilitate assay and atlas development.
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platform informs efficacy of PD-1 blockade
Sneha Berry1,2,3†‡, Nicolas A. Giraldo4†, Benjamin F. Green1,2,5†, Tricia R. Cottrell4§, Julie E. Stein4,
Elizabeth L. Engle1,2,5, Haiying Xu1,2,5, Aleksandra Ogurtsova1,2,5, Charles Roberts2,5, Daphne Wang5,
Peter Nguyen5, Qingfeng Zhu4, Sigfredo Soto-Diaz2,5, Jose Loyola2,5, Inbal B. Sander5, Pok Fai Wong6,
Shlomit Jessel6, Joshua Doyle7,8, Danielle Signer5, Richard Wilton7,8, Jeffrey S. Roskes7,8,
Margaret Eminizer7,8, Seyoun Park1,9, Joel C. Sunshine5, Elizabeth M. Jaffee1,2,3, Alexander Baras4,
Angelo M. De Marzo3,4, Suzanne L. Topalian2,10, Harriet Kluger11, Leslie Cope1,2,12, Evan J. Lipson1,2,3,
Ludmila Danilova1,2,12, Robert A. Anders1,2,4, David L. Rimm6, Drew M. Pardoll1,2,3,
Alexander S. Szalay1,7,8†, Janis M. Taube1,2,4,5*†

Next-generation tissue-based biomarkers for immunotherapy will likely include the simultaneous
analysis of multiple cell types and their spatial interactions, as well as distinct expression patterns of
immunoregulatory molecules. Here, we introduce a comprehensive platform for multispectral imaging
and mapping of multiple parameters in tumor tissue sections with high-fidelity single-cell resolution.
Image analysis and data handling components were drawn from the field of astronomy. Using this
“AstroPath” whole-slide platform and only six markers, we identified key features in pretreatment
melanoma specimens that predicted response to anti–programmed cell death-1 (PD-1)–based therapy,
including CD163+PD-L1– myeloid cells and CD8+FoxP3+PD-1low/mid T cells. These features were combined
to stratify long-term survival after anti–PD-1 blockade. This signature was validated in an independent
cohort of patients with melanoma from a different institution.

P
atients withmultiple solid cancer types
have shown unprecedented rates of tu-
mor regression and improved survival
after treatment with immune check-
point blocking agents. This has led to

U.S. Food and Drug Administration (FDA)
approvals for more than 17 different tumor
types for programmed cell death-1 (PD-1) or
programmed death ligand-1 (PD-L1) alone (1).
Unfortunately, for the majority of cancer types,
less than half of patients respond to anti–PD-1

or anti–PD-L1 agents (2), and thus it is critical
to develop predictive biomarkers that can pre-
cisely guide therapy for each patient. PD-L1
immunohistochemistry (IHC) in pretreatment
tumor biopsies is the most common tissue-
based biomarker approach for predicting re-
sponse to anti–PD-1 or anti–PD-L1 treatment,
with numerous FDA-approved companion di-
agnostic indications (3). Other approaches
include assessment ofmicrosatellite instability
(also FDA-approved) (4), testing tumor mu-
tational burden (5), detecting an interferon-g
(IFN-g) gene signature, and quantifying multi-
ple proteins bymeans of multiplex immunoflu-
orescence (mIF)/IHC. In a recentmeta-analysis,
mIF/IHC demonstrated improved diagnostic
performanceover other tissue-based approaches
when predicting response to anti–PD-1 or anti–
PD-L1 treatment (6), highlighting the biomarker
potential of these emerging technologies.
As the name suggests, mIF allows for the

study of multiple cellular and molecular fea-
tures of the tumor microenvironment (TME)
in a single tissue section. In addition to being
tissue-sparing, this approach has the potential
to provide critical information on intercon-
nected multidimensional variables linked to
the antitumor immune response within the
TME, including the coexpression of key immu-
nomodulatory molecules on specific cellular
subsets, the spatial relationships between di-
verse cell types, and quantitation of marker
expression intensity. This is akin to what is
achieved by using flow cytometry, with the

added dimension of spatial resolution within
the TME. However, most early multispectral
mIF studies reported on categorical interpreta-
tion of markers as positive or negative, without
intensity assessments (7–10). This can largely be
attributed to current imaging techniques hav-
ing deficiencies that limit their reliability in
measuring this parameter, including variable
fluorophore emission strength, improper as-
signment of molecules to the correct cell (for
example, when cells are adjacent or overlap-
ping in the plane of the tissue section and/or
because of signal spillover from an adjacent
channel), as well as luminosity variation and
lens distortions that preclude accurate as-
sessments of expression intensity in situ.More-
over, because of the data-intensive nature of
mIF imaging, most multispectral mIF studies
to date have characterized only a few high-
power fields (HPFs) per tumor (8–11). Select
HPF sampling is operator-dependent and
often represents only a fraction of the availa-
ble tissue for study, thus failing to represent
heterogeneity across the TME (12, 13). System-
atic approaches to mIF assay development,
image analysis, and data handling—as well
as user-independent, optimized slide sampling
strategies—represent critical unmet needs be-
fore these imaging technologies can become
standard-of-care diagnostics.
Here, we describe a stepwise strategy for

multispectralmIF assay development and asso-
ciated image analysis, which facilitates the gen-
eration of large, standardized datasets formore
effective immuno-oncology biomarker iden-
tification. Because of our specific interest in
measuring expression intensity in situ, our ap-
proach differs from early reports that describe
multispectral mIF panel development and
validation (7, 14). Emphasis was placed on
the reproducible detection of low–, mid–, and
high–PD-1 and –PD-L1 immune checkpoint
expressions, rather than simple categorical
expression. Degrees of surface expression of
immune regulatory molecules, such as PD-1,
have profound relevance to cellular functional
states (15). As such, our development and vali-
dation process characterizes and controls for
factors that affect signal intensity, such as sec-
ondary antibody selection to correct for loss of
low-level signal and fluorophore titration to
mitigate potential false-positive signal—that
is, “bleed-through” between channels—that
may result from very-high-intensity expression.
Our mIF panel was quantitatively validated
against single chromogenic IHC staining,which
is the current clinical gold standard (16–18)
In designing our methodology to address

the imaging and data handling challenges,
we turned to the field of astronomy, which
has vast experience in generating large multi-
spectral datasets that require numerous optical
corrections and normalizations. Breakthroughs
in astronomy have come from a standardized
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approach to image collection and object iden-
tification as well as the use of large databases
to properly house and analyze the amount
of multispectral information to be queried
(19–21). These standardized tools, integrated
with large underlying data collections, are
routinely accessed by thousands of astron-
omers, millions of times each year. Specific
lessons from the astronomy experience include
(i) a well-designed relational database allows
for efficient data queries and makes data
consistency easier; (ii) data should flow from
instrument to database, withminimal human
intervention; and (iii) with large enough data-
sets, statistical errors become small, and sys-
tematic errors dominate. These errors can only
be discovered with a conscious, methodical
effort, often by using redundant observations.
We applied this knowledge to object mapping.
This included designing our database structure
and workflows, and identifying and controlling
for the potential instrumental, software, batch-
to-batch variation, and field sampling error in
mIF image acquisition and analysis.
The resultant “AstroPath” platform creates

a framework for mIF assays and associated
image analysis that can underpin the evolu-
tion of uniparameter to multiparameter im-
aging as a standard of diagnostics to guide
application of immunotherapy regimens. We
demonstrate the utility of this platform in
characterizing the tumor immunemicroenvi-
ronment with only six markers (PD-1, PD-L1,
CD8, CD163, FoxP3, and a Sox10-S100 cocktail,
the latter to label melanoma cells) using an
mIF assay to characterize PD-1 and/or PD-L1
expression intensity on myeloid, tumor, and
T cells in situ on pretreatment tumor speci-
mens from patients with advanced mela-
noma receiving anti–PD-1 therapy. We show
that specific CD8+ cell phenotypes, includ-
ing early effector T cells characterized by
CD8+FoxP3+PD-1low/mid expression, showstrong
predictive value for therapeutic response. Fur-
ther, a CD163+PD-L1–myeloid phenotype was
identified as a feature associated with non-
response. Combining these key features with
operator-independent HPF selection resulted
in a highly predictive composite biomarker for
long-term survival.

Results
AstroPath facilitates high-quality, whole-slide
mIF datasets

The creation of high-quality mIF datasets by
using tyramide signal amplification (TSA) tech-
nology combined with multispectral imag-
ing involved four main phases: (i) mIF slide
staining, (ii) image acquisition and process-
ing, (iii) cell segmentation and phenotyping,
and (iv) batch-to-batch normalization. Each
phase poses distinct challenges, and we have
identified and quantified potential errors at
each of these steps (Fig. 1 and tables S1 and

S2) as well as developed quality assurancemea-
sures and corrections. We found that achieving
staining in the mIF format by using TSA-based
technology that was equivalent to chromogenic
IHC required a detailed approach to mIF assay
design, especially with regard to PD-1low/mid–
andPD-L1low/mid–expressingpopulations (Fig. 2;
a full description is provided under Materials
and methods and in figs. S1 to S5). The opti-
mization of parameters in this study was
performed by using monoclonal antibodies
matched to six fluorophores, but the principles
are directly applicable to other antibody com-
binations and higher-order staining.
In addition to careful assay optimization,

we investigated the potential systematic biases
in the imaging system. Controlling for such
biases will be critical as large databases of
tumor-immune maps composed of hundreds
of millions of cells are compiled. The original
intent of the microscope was for single HPF
selection, and it met and exceeded the manu-
facturer’s stated specifications.We customized
a routine to acquire whole slides with an aver-
age of 1300 HPFs in this context that has an
absolute coordinate system at a submicrometer
resolution, andwe developed image-processing
strategies with appreciably improved accuracy.
This facilitates the alignment of multiple slides
from the same tumor, other microscopes, and
imaging data from other modalities (for exam-
ple, scans from chromogenic IHC slides, tissue-
based mass spectrometry, and even potentially
harvesting spatially resolved single cells for
genomic and transcriptomic analysis, or iden-
tifying all the “contact neighbors” of every cell
in the database).
Biases that could affect robust assessments

of marker intensity were of specific interest, in
particular given the importance of measuring
PD-1 and PD-L1 low, mid, and high expression
on an individual cell basis across whole-slide
images. Artifacts from the optical system were
detected, including a lens curvature and illu-
mination variation. Such errors affect each in-
dividual HPF, resulting in a high-frequency,
repeating error (for reference, themediannum-
ber of HPFs for the TME in a specimen in this
study was ~300). To correct for these biases,
we adopted an approach used in astronomy,
in which each image acquired overlaps the
adjacent images by 20% (Fig. 3A and fig. S6).
The overlapping areas were used to quantify
and correct the warping in the image corners
due to the lens effect (Fig. 3B). The illumina-
tion variation in the Vectra 3.0 imaging system
shows an off-center circular pattern (Fig. 3B
and fig. S7A). We quantified the illumination
intensity to have an 11.2% variation between
the 5th and 95th percentiles of pixel inten-
sity across an average HPF. A smooth model
derived from an average of 11,508 HPFs was
then used to correct eachHPF image to reduce
the variation to 1.2% (fig. S7, B and C), facili-

tatingmore accuratemeasurements of expres-
sion intensity of the imagedmolecules in situ.
We next looked at the potential discontinu-

ities associatedwhenmultipleHPF image tiles
are assembled to image a whole slide. We ob-
served a range of randommisalignments from
±3 pixels in the x direction and ±5 pixels in the
y direction, owing to local mechanical errors
in stage movement. Incorrect stitching of the
HPFs results in cells close to the field bound-
aries to be truncated, yielding incorrect shape
and expression intensity estimates. This effect
is proportional to the area of a stripe of awidth
of a typical cell radius around the perimeter of
each field and can amount to ~5% of the total
number of cells (fig. S8A). These errors can be
mitigated by the 20% overlap in the layout of
theHPFs described above. This overlapmust be
large enough that one can accurately register
the adjacent images relative to one another.
There is also a small offset in the optical scale
of the microscope that results in an additional
stretch of up to 40 mm across the entire slide
(fig. S8, B and C). To correct for both of these,
the information contained in the overlaps was
also used to stitch the hundreds of HPFs to-
gether to create seamless whole-slide images.
Specifically, we used a spring-based model to
assist with field alignment, in which a single
field is pinned down and the remaining fields
are allowed to settle tominimize pixel shift in
overlapping regions, reducing both the local
and cumulative alignment error to <1 mm (Fig.
3C and Materials and methods) (22).
Once the HPF images were acquired and

corrected, we developed an approach to im-
prove cell segmentation and phenotyping. On
the basis of ourmultiplex panel, we identified
cell types, including CD163+ macrophages,
CD8+ T cells, CD8–FoxP3+ regulatory T cells
(Treg cells), tumor cells, and “other” (nega-
tive for these markers). Unexpectedly, we also
identified a distinct CD8+FoxP3+ population.
We found that standard segmentation algo-
rithms processed all cells simultaneously using
a “multimarker” approach and often erro-
neously divided larger cells intomultiple cells
(fig. S9). This resulted in an overestimation of
the number of tumor cells andmacrophages.
To correct this, we tailored segmentation algo-
rithms specifically designed to delineate the
membranes of larger cells separate from those
highlighting the smaller lymphocytes. After
accurate cell segmentation, a “single-marker”
approach to phenotyping was performed in
which cells were assigned positive or nega-
tive status for each marker individually (fig.
S10). Cell centers were then used to merge the
individual phenotype sets into a master phe-
notype catalog with a universal Cartesian co-
ordinate system (Materials and methods). The
single-marker approach markedly improved
segmentation and phenotyping of the larger
cells, correcting the ~25% overestimation of
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Sources of error: 11% intensity variation error due to incomplete flat fielding; 
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between fields affecting 4-5% of cells.
Solutions: 20% image overlap to quantify and correct for illumination and 

lens effects; spring based algorithm for field alignment. Total of 43 TB of data.

Image acquisition

Limitation: 5-10 HPF typically sampled whereby entire tumor 
microenvironnment is ~300 HPFs and all tissue on slide is ~1300 HPFs.

Solution: Capture whole slide. Total of 5 TB of data.

Multiplex staining

Source of error: Loss of up to 50% of cell populations with low intensity 
marker display, for example, there are PD-1low, PD-1mid, and PD-1high 

populations, and  PD-1low/mid is lost if not properly amplified. 
Solution: Optimized secondary/amplification reagent. 

PD-L1, CD8, FoxP3, Tumor, PD-1, CD163, DAPI

Fig. 1. AstroPath platform for staining optimization and image processing to generate high-quality datasets. The optimization of a six-plex
assay for characterizing PD-1 and PD-L1 expression (PD-1, PD-L1, CD163, FoxP3, CD8, Sox10/S100, and DAPI) is shown to detail the TSA-based
AstroPath workflow of mIF with imaging and associated data usage. Solutions to common limitations and sources of error are outlined. Additional
sources of error during multiplex staining and their solutions are provided in Fig. 2. Data usage amounts include the discovery and validation
cohorts combined. Scale bars, top to bottom, 70 mm, 1.0 mm, 250 mm, and 12.5 mm.
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the number of tumor and macrophages gen-
erated by the ready-to-use, standard multi-
marker approach (fig. S9).
A second advantage of the single-marker

phenotyping approach described here arises
from the requirement to create training sets
that include examples of all of the phenotypes
of interest. Using the image analysis software
as originally designed, it is theoretically possi-
ble to train on an unlimited number of pos-
sible phenotypes. However, (i) the number of
phenotypes possible by various combinations
of six markers would be very cumbersome to
train, requiring training on ~20 different pos-
sible phenotypes, and (ii) when these pheno-
types are rare, it canbe very laborious to identify
them in sufficient numbers for reliable train-
ing. By contrast, when using the single-marker
approach, phenotyping algorithms defined by
one marker at a time are run sequentially on
the same imagery. Phenotypes are then defined
by expression patterns for all markers after
image analysis is performed by executing logic
functions on exported data, so that training is
performed for the six markers alone and phe-
notypes are resolved after processing. Thus,
this approachmakes it much easier to identify
rare and/or unanticipated cell phenotypes or
coexpression patterns.
Last, we were able to reduce batch effects, a

common source of error when working with
large data sets (23), by calibrating intensities
of our lineage markers against tissue micro-
arrays. This allowed for the subsequent cali-
bration of PD-1 and PD-L1 intensities (fig. S11).
The coefficient of variation across the six stain-
ing batches in this cohort was reduced by ~50%
through this calibration strategy, thus allowing
for considerably more accurate and reliable
intensity comparisons between samples. Accu-
racy was improved by mitigating errors rang-
ing from 3 to 50% at multiple steps in each of
the phases of staining, imaging, cell identifi-
cation, and batch-to-batch effects (Fig. 1 and
tables S1 and S2). Many of these errors are
independent of each other and thus prone to
compounding.

Immune cell populations and PD-1 and PD-L1
expression vary by location within the TME

After the systematic optimization of staining
and imaging, it was possible to reliably char-

acterize cells with different PD-1 and PD-L1
expression intensities in situ (Fig. 4A). Spe-
cifically, the range of positive expression for
these molecules was divided into tertiles and
designated as low,medium, and high (fig. S12).
This allowed us to study the spatial distribu-
tion of marker intensity, such as the relation-
ship of PD-1 expression intensity on CD8+ cells
as it relates to the tumor-stromal border. The
highest density of CD8+PD-1– cells was present
in the stroma, which is consistent with either
naïve T cells or resting memory T cells that
have not been exposed to antigen in the recent
past (24). CD8+PD-1low, PD-1mid, and PD-1high

cells were present in the stroma and at increas-
ing densities in stromal regions adjacent to
the tumor, whereas CD8+PD-1– cells showed a
relative decrease at the tumor stromal margin.
CD8+ cells within the tumor displayed a differ-
ent pattern of PD-1 expression, with dramatic
diminution of PD-1– cells and increasing inten-
sity of PD-1 expression, which is consistent
with increased direct exposure to antigen. We
were also able to clearly identify PD-1 expres-
sion onCD8+FoxP3+ cells, whichmake up~3%
of the CD8+ cells within the TME. This inci-
dence is consistent with previous flow cytom-
etry reports on tumor digests (25, 26). These
relatively rare cells have been proposed to
represent tumor-reactive T lymphocytes at the
earliest stage after priming (25–27). Consistent
with that notion, they were highly localized to
the tumor-stroma boundary (Fig. 4B).

Achieving biomarker development for predicting
response to anti–PD-1

Ultimately, the most clinically relevant ap-
plication of immune imaging platforms is the
prediction of clinical outcomes after immuno-
therapy. There are currently no FDA-approved
companion or complementary diagnostics for
patients with melanoma receiving anti–PD-1
or anti–PD-L1 therapies. Companion diagnos-
tics for other tumor types use single-parameter
chromogenic IHC and light microscopy inter-
preted visually by a pathologist to estimate
the proportion of tumor cells and/or im-
mune cells expressing PD-L1 within the TME,
scored across the entire slide. When tested
here, the PD-L1 22C3 chromogenic IHC assay
scored for tumor cell expression (percent posi-
tive tumor cells) was not able to distinguish

responders from nonresponders in a cohort of
53 patients with advanced, unresectable stage 3
or stage 4 melanoma treated with anti–PD-
1–based therapy (fig. S13A). The six-plex mIF
assay was next applied to the same melanoma
specimens and imaged by using the AstroPath
platform to test whether the total density of
PD-L1+ cells, or the density of PD-L1+ tumor
cells or CD163+ macrophages when assessed
across the entire tumor section, were corre-
lated with response to immunotherapy. The
densities of total PD-L1+ and tumor PD-L1+

cells associated with response (P = 0.016,
0.0081, respectively), whereas CD163+PD-L1+

cells were not (fig. S13B). These findings high-
light the benefit of computer-assisted cell
density quantitation (number of cells per unit
area) compared with a visual assessment of
the proportion of positive cells for a given
marker by a pathologist’s eye.
A major knowledge gap in mIF assay devel-

opment surrounds the identification of critical
areas and the overall proportion of the TME
that need to be assessed to account for poten-
tial heterogeneity and to optimize predictive
value. Using the image tiles acquired with the
AstroPath imaging platform, we were able to
execute operator-independent strategies of
TME sampling to test these key variables for
their correlation with tumor regression after
immunotherapy. In both approaches, whole-
slide data were acquired in an unbiasedman-
ner. In the first approach, image analysis was
used to rankHPFs according to CD8+ cell den-
sity. An increasingnumberofHPFswere added,
representing an increasing proportion of the
TME sampled, starting with those with the
highest CD8+ cell density; we refer to these as
CD8 “‘hotspot”HPFs. In the second approach,
a “representative” sampling of the TME was
performed to add an increasing number of
randomly selected HPFs, irrespective of the
field’s cellular composition or location (central
versus peripheral) in the tumor.
We next refined the analysis by assessing

PD-1 or PD-L1 expression intensity on specific
cellular subsets to determine whether this
variable might allow for better clinical out-
comes prediction. The specific subsets included
T cells defined by CD8 (T effectors), FoxP3
(Treg cells or activated T cells), or a combina-
tion thereof, and also myeloid cells, defined
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Fig. 2. Optimization of staining to achieve high sensitivity and specificity
by using chromogenic IHC as gold standard. (A) Staining index (SI) and bleed-
through (BT) propensity were used to inform TSA fluorophore-marker pairing.
(B) Sensitivity of IF staining was compared with chromogenic IHC. The original
signal was decreased in PD-1, PD-L1, and FoxP3 when using the manufacturer’s
recommended protocol. The sensitivity was increased by replacing the secondary
antibody. Scale bar, 25 mm. (C) Primary antibody dilutions were then performed
to optimize the signal-to-noise (S/N) ratio. Representative figure for CD8 IF
staining indicates that 1:100 is the optimal dilution. (D) The optimal concentration
for each TSA fluorophore was determined next. Only dilutions with equivalent

signal to chromogenic IHC (light gray bars) were considered to ensure sensitivity
of the assay. To minimize BT between channels, the lowest acceptable TSA
concentration was chosen for most markers (CD8/540 in this example). However,
where a fluorophore-marker pair is prone to receive BT, the highest acceptable
TSA concentration was chosen to raise the threshold of true positivity (for
example, FoxP3/570). Check marks represent the dilution that was chosen.
(E) For final validation, the detection of each marker in multiplex IF was compared
with its respective monoplex IF, confirming equivalence. Photomicrograph
shows representative image of optimized multiplex panel. Scale bar, 70 mm.
*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001.
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by CD163. These were chosen because of
the well-established roles of CD8+ cytotoxic
T-lymphocytes, FoxP3+ Treg cells , conventional
CD4+ cells (CD4 Tconv cells), and suppres-
sive myeloid cells (CD163+ macrophages and
myeloid-derived suppressive cells) as major

factors in modulating antitumor immunity
(28). In this analysis, ~86%of CD8–FoxP3–PD-1+

cells are considered to represent CD4 Tconv cells
(fig. S14). Combining lineage markers and di-
viding PD-1 and PD-L1 expression into negative,
low, mid, or high generated 36 coexpression

features in addition to the original fivemarkers
that could be analyzed across specimens. We
tested the association of these combinatorial
features with objective response to anti–PD-1
using the two TME sampling strategies (Fig. 5).
When PD-1 intensity on different cellular
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Fig. 3. Minimizing instrumental errors during field acquisition and stitching
of whole slide by using lessons from astronomy. (A) The entire tissue of
interest was captured by using HPFs with 20% overlap as shown in the low- and
high-power images (average 1300 fields acquired per case). Scale bars, (left)
1.5 mm and (right) 1.0 mm. (B) Each HPF was found to have instrumental imaging
errors, including lens distortion and variations in field illumination. Scale bars,

(left) 200 mm and (right) 50 mm. (C) Pixels in overlapping image regions were
compared to determine the field alignment error. To improve alignment, a spring-
based model was used to minimize pixel shift. The misalignment error was reduced
from ±3 pixels in the x direction and from ±5 pixels in the y direction, to less
than ±1 pixel for both (ranges are reported for the 95th to 5th percentile). The
illumination variation was also reduced, from 11.2% variance to 1.2% variance.
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subsets was assessed, a gradient was ob-
served for CD8+cells, in which CD8+PD-1– cells
showed the strongest association with response,
followed by CD8+PD-1low and CD8+PD-1mid

cells. CD8+PD-1high showed no association
with response, which is consistent with an
exhausted phenotype after continued antigen
exposure. Surprisingly, the relatively rare
CD8+FoxP3+PD-1low/mid cell populations showed
some of the strongest associations with re-
sponse, with areas under the curve (AUCs) of
0.74 when ~10 to 30% of the TMEwas sampled
(10%, P = 0.048; 30%, P = 0.036) (Fig. 5A). This
peak was not as marked when a representa-
tive sampling strategy was used, with AUCs
of ~0.70 at 30% sampling (P>0.05) (Fig. 5B).
None of the CD8+ subsets were significantly
associated with response after P value cor-
rection for multiple tests when the represen-
tative sampling was used. This highlights the

potential benefit of strategic slide sampling
strategies for optimizing signal-to-noise ratios
for rare cell populations such as CD8+FoxP3+

cells within the TME. This may be further
explained mathematically by using a formula,
familiar in astronomy contexts, that describes
the signal-to-noise ratio growing as the inverse
square root of the noise present: signal=noise ¼
1=

ffiffiffiffiffiffiffiffiffiffiffi

noise
p

. In this analogy, the “signal” and
“noise” are HPF regions in the assay that do
and do not contain CD8+ subsets, respectively. In
other words, once themajority of CD8+ cells have
been gathered, acquiring additional surface area
of the TME that lacks CD8 infiltrates “dilutes”
the discriminatory signal of CD8+ cell densities.
When PD-L1 intensity on different cellular

subsets were assessed, CD8+FoxP3+PD-L1–/low,
CD8+PD-L1low, and tumor cells that were
PD-L1low were positively associated with ther-
apeutic response, whereas CD163+PD-L1– cells

and tumor cells that were PD-L1– were nega-
tively associated with therapeutic response. Of
these, the highest AUCs were for the “negative
features”; for example, AUCs of ~0.73 to 76
were observed for the CD163+PD-L1– and
tumor cell PD-L1– populations by using both
the hotspot approach (at ~30 to 50% sam-
pling) and the representative sampling ap-
proach (for example, CD163+PD-L1– at 30%
sampling, P = 0.036; tumor PD-L1– at 50%
sampling, P = 0.031) (Fig. 5). Tumor cell and/
or “immune cell” expression (often equated
with macrophages) of PD-L1 across the entire
TME are the focus of most current companion
diagnostics; however, our results suggest that
the lack of expression in these populationsmay
have higher predictive value. PD-L1low expres-
sion on CD8 T cells has a positive predictive
value. This is likely because activated effector
T cells up-regulate PD-L1.
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Fig. 4. Immune cell populations and marker expression in situ vary by location.
(A) Representative mIF image showing a hotspot at the edge of the tumor with
PD-1low T cells adjacent to PD-L1high cells. Within the tumor parenchyma, PD-1high and
PD-1mid cells were observed, adjacent to PD-L1low cells, which is consistent with a
more exhausted T cell phenotype. Histograms including all cases in the cohort show
cell densities of CD8+ cells displaying PD-1 as a function of distance to tumor
boundary. PD-1 expression intensity increased as T cells were exposed to tumor

antigen. (B) Representative image of a metastatic melanoma deposit showing
localization of CD8+FoxP3+ cells in areas of dense CD8+PD-1neg and CD8+PD-1+ cell
infiltrates, adjacent to tumor cells demonstrating adaptive (IFN-g–driven) PD-L1
expression by tumor. Histograms including all cases in the cohort showed that
CD8+FoxP3+ cells were most likely to be localized near CD8+PD-1– cells. Other cell
types in the same relative location to the tumor-stromal boundary included
CD8+PD-1+ cells and PD-L1+ tumor cells.
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Multifactorial analysis of mIF assay provides
greater predictive accuracy
We then developed a combinatorial approach
using all six markers in the mIF assay for
predicting objective response in melanoma
patients after immune checkpoint–blocking
therapies. Inspection of the AUCs across the
individual features helped us to select a 30%
hotspot HPFs slide sampling strategy. Spe-
cifically, we studied the 10 features at 30%
hotspot sampling associated with response
by univariate analysis at P < 0.05 (Fig. 6A). We
applied a logistic regression model to deter-
mine the accuracy of the combined features
for predicting objective response, and the re-
sultant AUC was 0.92 (Fig. 6B). This AUC was

higher than when we tested combined features
using data from the whole TME (fig. S15),
indicating that slide sampling is also an
element that canbe optimized and standardized.
This finding further supports the concept that
strategic sampling of immunoactive hotspots for
this combination of markers enhances predic-
tive value. It is possible that assay performance
could be further improved by using a different
sampling strategy for each individual feature.
To assess the predictive value of the key

features on long-term survival, we assigned
patients to three groups with characteristic
cell coexpression phenotypes detected by the
mIF assay (Fig. 6C): (i) those with the highest
cell densities of one of the three negatively

correlated features (CD163+PD-L1– cells and
tumor cells, including PD-L1– tumor), irre-
spective of other factors; (ii) those with the
highest densities of at least one of the seven
positively correlated features (for example,
CD8+FoxP3+PD-1low/mid and/or CD8+PD-L1low);
and (iii) patients lacking either of these defining
features. These groups then respectively segre-
gated into those demonstrating poor, good, and
intermediate prognoses for overall survival and
progression-free survival (Fig. 6D). These find-
ings were consistent in small biopsies as well
as in larger resection specimens (fig. S16).
The value of the six-plex assay for predicting
objective response to therapy as well as the
identification of these three prognostic groups
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Fig. 5. AUC heat maps for response to therapy as a function of various
immune cell types expressing PD-1/L1 and the intensity of PD-1/L1
expression by using two different slide-sampling strategies. (A) PD-1/
PD-L1 mIF assay combined with hotspot HPF selection showed that the
densities of CD8+FoxP3+PD-1low/mid, tumor PD-L1–, and CD163+PD-L1– cells
had the highest value of individual features for predicting response and
nonresponse to anti–PD-1. Approximately 86% of CD8-FoxP3-PD-1pos cells in

melanoma represented conventional CD4 T cells (fig. S14). (B) A
similar characterization was performed by using representative field
sampling and highlighted similar key features associated with response
to therapy. However, the resultant AUCs, particularly for the CD8+ cell
subsets, were not as high when using this approach. *Tumor PD-L1–

and CD163+PD-L1– were negatively associated features; all others were
positively associated features.
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were then validated by using a separate, in-
dependent cohort from a different academic
institution (AUC for objective response = 0.88;
OS, P = 0.036, PFS, P = 0.024, log-rank test)
(Fig. 6, B and D). A four-plex version of the
assay (CD8, CD163, PD-L1, and tumor) and also
a six-plex version that did not include PD-1 and
PD-L1 expression intensity groupings were
also tested, and both were comparatively less
effective at predicting response and stratifying
patients when compared with the index six-
plex mIF assay (figs. S17 and S18, respectively).

Discussion

Here, we present a detailedmultistep platform
for multispectral imaging of tissues that gen-
erates high-quality datasets at single-cell res-
olution for biomarker discovery and quantitative
pathology to guide precision immunotherapy.
Leveraging strategies originally developed
to analyze astronomic observations at the
1022 meter scale to improve our microscopic
image acquisition and associated analytics
at the 10−6 meter scale, the AstroPath plat-
form solves a number of common sources
of error associated with tissue imaging. To ac-
curately apply these image analysis programs,
we had to develop specific staining protocols
that generate consistent images, to which the
imaging platform is applied. The resultant high-
quality whole-slide multiplex image generation
allowed us to map rare cell types with complex
phenotypes such as CD8+FoxP3+PD-1+ T cells,
characterize PD-1 and PD-L1 expression inten-
sity in situ, and assess the biomarker value of
theseparameters and their spatial arrangements.
AstroPathuses a scalable, reproducible, operator-
independent approach to address important
challenges regarding HPF sampling, which will
be necessary for the development of stand-
ardized, multidimensional pathology diagnos-
tics to guide therapeutic decisions in the rapidly
growing field of precision immuno-oncology.
Differential PD-1 expression on CD8 cells

is indicative of T cell activation status. PD-1–,
PD-1low, PD-1mid, and PD-1high T cells in lym-
phocytic choriomeningitis virus (LCMV)mouse
models are associated with naïve, short-term
memory, activatedeffector, andhyper-exhausted
effector T cells, respectively (15). In this model,
the PD-1low and PD-1mid populations have greater

proliferative potential and are more “recov-
erable” with PD-1/PD-L1 blockade than are
PD-1high cells (29, 30). We assessed PD-1 expres-
sion intensity in human, pretreatment mel-
anoma formalin-fixed paraffin-embedded (FFPE)
tissues, and our findings corroborate findings
from in vivo animal models. Specifically, we
show that PD-1 expression increases as lym-
phocytes enter the tumor, which is consistent
with increased antigen exposure and activa-
tion. Further, we demonstrate that among
CD8+PD-1+ cells, PD-1low/mid are most strongly
associated with response to anti–PD-1. Our
findings differ from a previous human study
in non–small-cell lung cancer, which indicated
that CD8+PD-1high lymphocytes associated with
anti–PD-1 response (31). This difference may be
due to the tumor type studied or the method-
ology used to define PD-1 low versusmid versus
high groups. Among other things, that study
only identified PD-1–, PD-1low, and PD-1high

subpopulations, and it is possible that cells
classified as PD-1mid in this study were grouped
with PD-1high in that study. Other differences
include our assessment of our findings in situ
as opposed to performing flow cytometry on a
tumor digest. Larger cohorts will be required
to confirm diagnostically meaningful thresh-
olds for PD-1 expression groups in tumor tissues.
Additional markers such as T-bet, Eomesoder-
min, and/or LAG-3 in combination with cell-
line tissue microarrays that express PD-1 at
known intensities or concentrations could
potentially be used to validate and standard-
ize PD-1 thresholds that define distinct T cell
phenotypes or subsets in situ (15, 32–34).
We found the density of CD8+FoxP3+ cells to

be closely associatedwith a positive response to
anti–PD-1 therapy. Some reports suggest that
these cells can function as suppressors; how-
ever, more recent studies indicate that they
represent activated T cells that can differenti-
ate into nonexhausted tumor-specific effector
cells with strong proliferative potential, IFN-g
production, and killing activity. Specifically,
reports characterizing the functional proper-
ties of this population have highlighted that the
cytotoxic potential (perforin and/or granzyme)
and cytokine polyfunctionality (interleukin-2,
IFN-g, and/or tumor necrosis factor–a) is in-
creased as compared with their CD8+FoxP3–

counterparts (25–27, 35). Given that most of
the PD-L1 expression in melanoma is through
the classic adaptive resistance mechanism of
IFN-g production by activated T cells in the
TME (36, 37), such functionality is compatible
with the strong localization of CD8+FoxP3+

cells adjacent to peripheral tumor regions that
are strongly PD-L1+.
We also identified a CD163+PD-L1– myeloid

phenotype that was associated with a lack of
response to therapy. A similar cell phenotype
has been described in patients with pancreatic
and head and neck squamous cell carcinomas
(38). This cell type, when combined with a high
density of tumor cells lacking PD-L1 expres-
sion, was able to specifically identify a subset
of patientswith thepoorest long-termoutcomes,
potentially allowing for selection of an alternate
therapeutic regimen (39). Once this poor prog-
nostic group was identified, the remainder of
the patients could be stratified into those with
good and intermediate prognosis by using
the positive prognostic features identified by
the current assay. Specifically, we used the
highest densities for any of the positive factors
(for example, CD8+ cells, or subsets such as
CD8+PD-L1low or FoxP3+CD8+PD-1low/mid). Fu-
ture efforts should focus on improved resolu-
tion of the intermediate prognostic group and,
among other things, should include character-
ization of tumor-draining lymph nodes, given
their potential role in anti–PD-1 responses (40).
Whereas CD8+ subsets inform our under-

standing of mechanism of action of these
agents and associated T cell biology, a distilled
panel of markers providing comparable prog-
nostic accuracy is desirable for clinical assays.
We considered whether we could potentially
reduce the number of core assaymarkers from
six to four. A reduced number of markers could
ease cross-site standardization and reproduci-
bility during clinical implementation. We
found that total CD8+ cell densities were less
effective at predicting response and stratifying
patients with good versus intermediate prog-
nosis than when select CD8+ T cell subsets
were quantified using the six-plex. Nonethe-
less, a potential reduction to these fourmarkers
is still of interest because it could allow for the
inclusion of other parameters, which may pro-
vide substantial additive information regarding
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Fig. 6. Multifactorial analysis of six-plex mIF assay with a focus on PD-1
and PD-L1 intensities for predicting objective response and long-term
survival. (A) The 10 features associated with response to therapy by univariate
analysis at 30% hotspot HPFs. Features are listed in decreasing order of
predictive value (table S3). (B) Combinatorial receiving operating characteristics
(ROC) curves and the corresponding AUC values were assessed for these
10 features in the discovery cohort, as well as a second, independent cohort.
(C) (Left) The TME from patients with poor prognosis was characterized by
high densities of tumor cells and CD163+ cells that lack PD-L1 expression,
irrespective of whether other immune cells were present. (Middle) Those with
intermediate prognosis had TMEs with low level immune infiltrates and were not

CD163+PD-L1neg myeloid-rich. (Right) The patients with the best prognosis had
TMEs that were highly inflamed, characterized by CD8+ and CD8+FoxP3+ T cells
expressing various PD-1 and PD-L1 intensities. PD-L1 expression was also evident
on CD163+ cells. Scale bar, 20 mm. (D) Distinct TMEs defined by specific cell
types displaying differing PD-1 and PD-L1 expression intensities stratified
patients into those with poor, intermediate, and good overall survival (OS) and
progression-free survival (PFS) in a discovery cohort, Kaplan-Meier analysis.
Similar stratification of patient outcomes was achieved by using an independent,
validation cohort from a different institution (OS, P = 0.036; PFS, P = 0.024,
log-rank test). Similar analyses focused on the whole TME (100% sampling) are
presented in fig. S15 and table S4.

RESEARCH | RESEARCH ARTICLE
D

ow
nloaded from

 https://w
w

w
.science.org at Johns H

opkins U
niversity on M

ay 07, 2024



patient outcomes. Additional markers that
could be explored for inclusion in future mIF
assays include those for antigen presentation,
myeloid, dendritic, or natural killer (NK) or B
cell markers, other immune checkpoints, or pro-
liferationmarkers, among others (38, 39, 41–47).
Further, it may also be possible to include a
marker that could facilitate amore streamlined
workflow—for example, a pan-membrane
stain to assist cell segmentation algorithms
and potentially obviate the need for single-
marker phenotyping.
One aspect of the slide imaging strategy

described here is the unbiased acquisition
of the entire TME followed by standardized
selection of discrete HPFs. This approach
facilitates the characterization of optimal tissue
sampling for a given biomarker. For example,
the association of CD8+FoxP3+PD-1low/mid cell
densities with response was most clearly de-
monstrated after the entire slide was scanned,
CD8+ cell densities were calculated per HPF
for the entire TME, and at least 10% of the
highest hotspot fields were assessed. This
correlates to amedian of ~20HPFs. Previous
studies using multispectral mIF to character-
ize the TME in meaningfully sized cohorts
have typically evaluated ~5 to 10 manually
selected HPFs per sample by using either
subjectively identified hotspots or a deliber-
ate sampling of heterogeneous TME regions
(8–10). These approaches have been used
empirically and are operator-dependent. Our
findings suggest that for the panel tested here,
those approaches likely provide an insufficient
description of the TME. The idea of incremen-
tally assessing field selection and associated
specimen adequacy has not been previously
addressed for tissue-based biomarkers for
immuno-oncology in a rational way. Leverag-
ing the whole-slide data to identify the optimal
subsampling strategy allows refinement of can-
didate biomarkers and the development ofmore
efficient and robust clinical diagnostic assays.
As the immuno-oncology fieldmoves beyond

proof-of-principle tissue-based multiplexing
studies, there is a risk that large volumes of
data will be generated by using multiplex as-
says and associated microscopes that may not
be comparable across research programs. The
detailed multistep approach to multiplex stain-
ing and imaging handling described here will
help support the standardization of results
across the large, multi-institutional datasets
that will be prerequisites for clinical implemen-
tation. For example, staining sensitivity was
benchmarked to chromogenic IHC, and a single-
marker digital image analysis strategy for cell
segmentation was implemented to ensure
that the multiplex assay output reflected the
“ground truth,” single-marker analysis. Sys-
tematic characterization of the entire system,
from the fluorophores used to the image sampl-
ing strategies, allowed for the measurement

and mitigation of errors at each step. As such,
this effort provides a framework for assay
development and associated data quality
standards for multispectral IF, as well as re-
lated multiplexing technologies. It is possi-
ble that commercial solutions to some of the
errors identified here will become available
through continued technology development,
although those are likely to be focused on stan-
dardization within an individual platform.
By contrast, the approach described here al-
lows for the modular integration of different
commercial or open-source offerings at multi-
ple points within the AstroPath platform, pro-
vided they adhere to a universal performance
standard.
Universal standards also facilitate scaling

out and up, which will be of particular interest
as tumor-immune atlases are generated that
include multiplex IF-IHCmaps of thousands
of slides across multiple tumor types. We
captured individual cells, their immunoactive
marker expression, and associated positions
within tissue and calibrated them carefully
because in the studies of the TME, coexpres-
sion analyses on single cells as well as relative
proximities are extremely important. The indi-
vidual tiles used to image whole slides were
each corrected for systematic errors such as
illumination variation and lens distortions.
The corrected images were then used to com-
pensate for small errors in the mechanical
stage positioning in order to build an absolute
coordinate system for the whole slide, similar
to approaches used in astronomy for mapping
the sky. In the future, such approaches will
enable the integration of whole-slide output
from multiple microscopes run in parallel. It
will also facilitate the assessment of multiple
slides from the same tumor, by using the same
or different slide imaging technologies. The
database architecture was also designed with
data consistency, modularity, and parallelism
in mind. The metadata files were organized
in a rigid file hierarchy, consisting of cohorts,
projects, slides, controls, batches, and other
information. This organization allowed us to
readily automate most parts of the platform;
for example, we designed the single-marker
phenotyping merging software to automati-
cally run off industry-standard output files.
Additional gains in scale will be aided by further
automation.
The whole-slide protein-based profiling by

using multispectral IF as performed here is
computationally equivalent to whole-genome
sequencing. Specifically, one mIF panel of six
markers generates approximately 50 GB of data.
After processing, the raw data are on par with
sequencing a full human genome with 30×
coverage on an Illumina platform. The total
data volumes for the discovery and validation
cohorts here amounted to 5 TB of raw imaging
data, which expanded during processing to

43 TB and was composed of 2.5 million indi-
vidual files and 7545 folders. The final vol-
ume of the calibrated data in the database for
analysis is 0.5 TB. Until recently, technical chal-
lenges coupled with insufficient computing
capacity and analytic strategies have limited
the application of this emerging technology.
Scaling up to whole-slide analysis was achieved
by combining a robust hardware infrastructure
with a systematic reduction of errors thatwould
otherwise be compounded when generating
large datasets. Specifically, expertise developed
in the field of astronomywas leveraged to build
a relational database linking geographically
resolved single-cell proteomic data with anno-
tated, whole-slide mIF images and clinical in-
formation to enable integrated analyses. The
resultant AstroPath platform demonstrates the
feasibility of building and querying an integ-
rated database from whole-slide mIF data.
Such architectures will underpin future, open-
source, tumor-immune atlases with billions of
spatially mapped single cells, enabling analy-
ses at unprecedented scales.

Materials and methods
Case selection

Staining optimization of the mIF assays was
performed on archival, FFPE sections of ton-
sil and melanoma. Once the index mIF assay
(PD-1, PD-L1, CD8, FoxP3, CD163, S100/Sox10)
was optimized, a retrospective analysis was per-
formed on a discovery cohort of pre-treatment
FFPE tumor specimens from 53 patients with
metastatic melanoma who went on to receive
anti-PD-1-based therapy. Thirty-four patients
received anti-PD-1 monotherapy (nivolumab
or pembrolizumab) and 19patients receiveddual
anti-PD-1/CTLA-4 blocking therapy (nivolumab
and ipilimumab). Patients were classified as
responders (complete response or partial re-
sponse) or non-responders on the basis of
RECIST 1.1 criteria. 5-year overall and pro-
gression free survival information was also
determined. Additional clinicopathologic char-
acteristics of the cohort were also collected,
such as age, sex, and stage of disease (table S5).
A single representative FFPE blockwas chosen
from each patient specimen for mIF staining.
The PD-L1 IHC companion diagnostic assay
(22C3) was also performed on these speci-
mens. An independent validation cohort of
pre-treatment FFPE tumor specimens from
45 patients with metastatic melanoma was
also studied, (table S6). The cohorts differed
slightly in whether patients had received im-
munotherapy prior to anti-PD-1-based therapy
and whether patients received BRAF inhibitor
therapy if they progressed on anti-PD-1.
The optimized 6-plexmIF assay was applied

to the specimens from the discovery and
validation cohorts and correlated with objective
response and long-term survival. Cases in both
the cohorts were reviewed by a board-certified
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dermatopathologist (JMT or IBS) to confirm
the diagnosis of melanoma. Cases with less
than 5 mm of tumor on the slide, those with
extensive necrosis or folded tissue, or those
of a pure desmoplastic histologic subtype were
excluded from analysis.
A separate tissue microarray (TMA) was

used to characterize the lymphocyte subsets
expressing PD-1 in the melanoma TME, using
a second mIF assay (PD-1, CD8, CD4, CD20,
FoxP3 and Sox10/S100). The TMA contained
tissue fromninety-four patientswithmetastatic
melanoma. A single representative FFPE block
from each tumor specimen was chosen for in-
clusion in the tissue microarray. Six 1.2 mm
cores were taken from each block represent-
ing both the central and peripheral areas of the
tumor and tiled in a tissue microarray format.
The resultant TMAs were reviewed, and cores
with tissue folds, excessive necrosis, and/or
<10% surface area occupied by tumor cells
were excluded from analysis.
The studywas performed in accordance with

Johns Hopkins University and Yale University
IRB approvals. The discovery cohort was from
Johns Hopkins and used tissue collected under
protocols # NA_00085595 and 00090257. The
tissue assessed in the validation cohort was
obtained from the Yale Pathology Archives
based on Yale Human Investigation Commit-
tee protocols #9505008219, #0304025173 and
#0003011706. These protocols allow for the
retrieval of tissue from archives from consent-
ing patients or were approved for use with
waiver of consent.

Reagents and Multispectral Microscope
Fluorophore reagents and multiplex staining

FFPE slides were stained using tyramide
signal amplification (TSA) technology in order
to achieve superior amplification and higher
plexing compared to standard IF detection
(fig. S1). In comparison to detection of primary
antibodies with directly labeled secondary anti-
bodies, TSA technology utilizes HRP-polymer
secondary mediated detection. A single HRP-
polymer secondary can catalyze the activation
of several fluorophore labeled tyramides (TSA
fluorophore). Following activation, the TSA
fluorophores can covalently bind to surround-
ing tyrosine residues and remain deposited on
the tissue during heat treatment steps that
strip off primary and secondary antibodies.
By employing sequential rounds of staining
and stripping, we labeled 6 markers plus
4′,6-diamidino-2-phenylindole (DAPI) on a single
FFPE tissue section.

Slide scanning and multispectral unmixing

Images were scanned with the Vectra 3.0
Automated Quantitative Pathology Imaging
System (Akoya Biosciences) and processed
using digital image analysis software, inForm
(Ver 2.3, Akoya Biosciences). A schematic of

the multispectral imaging microscope system
is shown in fig. S2. The system captures 20X
multispectral images consisting of a multi-
layer image ‘cube’ of 35 image planes. These
planes correspond to the wavelengths selected
by the liquid crystal tunable filter, acquired
across the visible light spectrum. Images of
multiplex stained samples are then unmixed,
using an inverse least squares fitting approach
that minimizes the square difference between
the measured and the characteristic emission
spectrum of each fluorophore (see below). Un-
mixing separates the autofluoresence and the
overlapping emission signals of each fluoro-
phore, thus removing autofluoresence back-
ground and creating eight signal specific
‘component’ planes; one for each fluorophore
plus DAPI and autofluoresence.
In order to unmix the multispectral image

cube, the known characteristic emission spectra
of the TSA fluorophores, DAPI, and a spectrum
representative of the background autofluore-
sence are used to generate an unmixing library.
To acquire the pure spectra for the library,
4 mm thick FFPE tonsil sections were stained
with anti-CD20 (dilution 1:400, clone L26 Leica
microsystems) by monoplex IF (“Monoplex
IF” section) with each fluorophore. The TSA
concentrations were adjusted to obtain pixel
normalized fluorescence intensity (NFI) counts
of 10 to 15 for each TSA fluorophore (520 1:150,
540 1:500, 570 1:200, 620 1:150, 650 1:200, 690
1:50). DAPI was not added at the end of the
protocol. One tonsil section was stained with
DAPI alone to extract the DAPI spectrumwhile
the autofluorescence spectrum was extracted
from an unstained slide of the tissue of interest.
The slides were imaged and the spectra ex-
tracted in inForm using automated tools for
library creation. Similarly, for spectral unmix-
ing of chromogenic stains, a spectral library of
DAB and hematoxylin was used.

Staining optimization

During the staining process, sources of poten-
tial error arisewhen signal is not fully detected
or when false positive signal is detected in a
given channel due to spillover from a different
channel, a.k.a. ‘bleed-through’. The design and
optimization of the 6-plex panel therefore in-
volved (i) determination of a staining index
(SI) for each fluorophore and pairing of TSA
fluorophores with markers based on bleed-
through calculation, (ii) selection of secondary/
amplification reagents, as well as selection
of the concentration of (iii) primary anti-
body and (iv) fluorophores for maximal sen-
sitivity and specificity. The final step is the
combination of all the optimized monoplex
protocols into the multiplex assay format such
that equivalent staining is achieved for each
marker between 6-plex mIF, monoplex IF,
and single stain chromogenic IHC (Fig. 2 and
table S1).

Characterizing TSA fluorophores—Staining
index (SI), bleed-through (BT), and
marker pairing
To explore fluorophore staining indices, se-
quential slides from five archival tonsil spe-
cimens were stained by monoplex IF with
anti-CD8 (dilution 1:100) and each TSA fluo-
rophore at dilution 1:50. Single-cell data were
exported from inForm. The SI was calculated
as the difference between the mean fluores-
cence intensity of the positive and negative
cell populations divided by two standard de-
viations of the negative population.
The same tonsil specimens were used to

characterize bleed-through or spillover of
fluorophore emission spectra, a frequent limi-
tation of multiparametric fluorescent methods.
Pairwise dot plots of the logarithm of normal-
ized fluorescence intensity counts were created
for all channels. We consistently observed a
linear relationship at low intensity counts and
an exponential relationship at high intensities
(fig. S3). In order to account for this duality we
parameterized a hyperbolic sine curve and fit
it to each paired dataset using a non-linear
least squares model. To improve the accu-
racy of the fit we removed outliers in the
noise population. We then inverted the data
and centered it about the median of the
original noise. The propensity of BT was then
calculated as the linear term * the non-linear
term of the fitted curve.
The SI and bleed-through information was

thenused topairTSA fluorophoreswithmarkers
(Fig. 2A). For example, a fluorophore with
high SI was paired with a marker with lower
intensity expression, e.g., TSA fluorophore
520 and PD-L1. Fluorophore pairs “at risk”
for bleed-through were assigned to markers
found in different cellular compartments, al-
lowinganypotential bleed-through tobe removed
during image analysis, e.g., CD8, a membrane
stain, was paired with TSA fluorophore 540,
while FoxP3, a nuclear stain, was paired with
TSA fluorophore 570.

Chromogenic staining

Four-micron thick sections were stained indi-
vidually for CD8, CD163, PD-1, PD-L1, FoxP3,
Sox10, S100 and a Sox10/S100 cocktail. Briefly,
slides were deparaffinized, rehydrated, and sub-
jected to heat-induced epitope retrieval (HIER)
in pH 6 target antigen retrieval buffer (S1699,
Dako) for 10 min at 120°C (Decloaking cham-
ber, Biocare Medical). Blocking for endogenous
peroxidase (3% H2O2, H325-500, Fisher Scien-
tific) and protein (ACE Block, BUF029, Bio-Rad)
was performed. For the protocols using a
biotinylated secondary antibody, endogenous
biotinwas also blocked (Avidin/Biotin Blocking
Kit, SP-2001, Vector Labs). Primary antibodies
were incubated at 4°C for 22 hours, followed
by secondary antibodies at room temperature
(RT) for 30 min, as noted in table S7. For the
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protocols using a biotinylated secondary anti-
body, a tyramide signal amplification (TSA)
system was used as described previously (13).
Antigen-antibody binding was visualized with
theuseof 3,3′-diaminobenzidine (D4293, Sigma).
Slideswere counterstainedwithhematoxylin and
coverslipped (VectaMount, H-5000, VectorLabs).

Monoplex IF

Monoplex IF staining was performed on se-
quential slides, 3 tonsils and melanomas (the
latter for Sox10 and S100), to titrate each primary
antibody (table S8). Briefly, slides were depar-
affinized and subjected to microwave HIER
(Haier 1000W) in pH 9 followed by pH 6 buffer
(AR900 and AR600, respectively, Akoya Bio-
sciences) for 45 s at 100% power and 15 min
at 20% power. Endogenous peroxidase removal
(3%H2O2,H325-500, Fisher) and protein block-
ing (Antibody Diluent Background Reducing,
S3022, Dako) were performed followed by
primary antibody incubations at RT, starting
at double the optimal concentration used for
chromogenic staining and serially diluting.
All secondary antibodies were incubated for
10 min at RT. The TSA fluorophore (Opal 7
color kit, NEL811001KT, Akoya Biosciences)
paired with a given marker was then applied
for 10 min. A final microwave step was per-
formed at pH 6, slides were stained with DAPI
(Opal 7 color kit, NEL811001KT, Akoya Bio-
sciences) and coverslipped (ProLongDiamond
Antifade Mountant, P36970, Life Technologies).
For comparisonof primary titrationswe selected
10 corresponding high power fields (HPFs) for
each dilution and evaluated the signal to noise
ratio (SNR)usingbothpixel-based and cell-based
approaches (fig. S4A and section “Approaches
to signal quantification”). Ten corresponding
HPFs were also chosen for comparison to
chromogenic IHC. HPFs were specifically chosen
to capture a broad dynamic range of PD-1 and
PD-L1 expression (fig. S12).
Evaluation of the secondary antibody/ampli-

fication reagent is a key optimization step early
in the process. If this step is left until later in
panel optimization, it may not be possible to
achieve comparable staining levels to chromo-
genic IHC for certain markers. For example,
when using a ‘less powerful’ secondary anti-
body/HRP polymer system, only 50% of PD-
1 expressing cells were identified compared to
chromogenic IHC (Fig. 2B). Specifically, the
assay was only sensitive enough to detect cells
expressing PD-1 at high intensities, whichmay
only represent the ‘exhausted’ subset that may
not be recoverable by anti-PD-1 therapy (7).
PD-L1 and FoxP3 also showed lower levels of
expression, while all other markers showed
comparable staining between monoplex IF
and chromogenic IHC. To address the relative
loss of detection of PD-1, PD-L1, and FoxP3,
different components of the assay were modi-
fied, including the primary and secondary

antibody reagents, incubation times, and dif-
ferent amplificationmethods. A new secondary
antibody (PowerVision Poly-HRP, 1:1 dilution,
Leica Biosystems) improved the assay sensi-
tivity for these markers (Fig. 2B) and thus
was adopted for PD-1, PD-L1, and FoxP3 in
the panel. Importantly, we found that it was
key to select the secondary antibody for each
marker prior to primary antibody or TSA di-
lution optimization.
The primary antibody concentration is

determined next (Fig. 2C and fig. S4), followed
by selection of the TSA concentration for each
fluorophore (Fig. 2D). These latter two steps
serve to optimize the signal to noise ratio and
to prevent signal bleed-through or blocking),
respectively. After the optimal primary anti-
body concentration was identified, TSA tit-
rations were performed on 5melanoma tumor
sections for all markers (table S9). HIER
steps were performed both before and after
staining in accordance with how the slides
would be treated in the final multiplex assay.
Ten corresponding HPFs for each IF condi-
tion and the related chromogenic IHC were
selected for analysis (see approach to signal
quantification below). Equivalence of signal
compared to chromogenic IHC and bleed-
through between fluorescent channels was
considered to select the optimal TSA concen-
tration for each marker.

Multiplex IF

The final step in assay validation is to combine
all of the optimized monoplex protocols into
the multiplex assay format. Single sections
from five FFPE melanoma specimens were
stained for all 6 markers in the multiplex
panel, (table S10). In addition, the three 4 mm
thick tissue sections before and after the slide
used for the 6-plex panel were stained for the
individual markers. Ten HPFs were compared
between the multiplex IF and the correspond-
ingmonoplex IF (see approach to signal quan-
tification below). When following the approach
detailed above, equivalent staining is achieved
for eachmarker between 6-plexmIF,monoplex
IF, and single stain chromogenic IHC (Fig. 2E
and fig. S5A). Of note, while the total cell counts
in multiplex format matched those in mono-
plex, the dynamic range (as representative of
the intensity spread between the 95th and 5th
percentile cell expressing a givenmarker) of the
immunofluorescence signal was lower in the
multiplex versus monoplex format (fig. S5B).

Approaches to signal quantification

Signal was quantified by a number of different
approaches, including cell-based and pixel-
based approaches, both with and without
machine learning. The cell-based approach
combined with machine learning is recom-
mended by the manufacturer. It labels indi-
vidual cell types and assigns them Cartesian

coordinates and thus facilitates analysis of cell
densities, fluorescence intensities of markers
in different cell compartments, marker co-
expression, and distance metrics between cells.
Cell-based quantification was performed by
using the Cell Segmentation Module (which
identifies and maps individual cells) in the
inForm software, followedbymachine-learning
based-phenotyping, i.e., assigning a cell-type.
A cell-based approach without machine

learning was also used to quantify signal,
since it is faster and requires less user input.
The Cell Segmentation Module was used to
output the mean fluorescence intensity for
each fluorophore in the compartment of in-
terest for each cell. The data were then binned
into 10% relative intensity intervals, and the
median of the top 10% was extracted as signal
and the bottom 10% as noise for quantile-based
cell analysis.
The pixel-based approaches are not dependent

on cell identification, i.e., cell segmentation,
and are simply a measure of pixels that are
positive for a marker over a given area. This
approach was used when comparing IF and
IHC stains, since the same cell segmentation
algorithms cannot be applied to both techni-
ques. Pixel-by-pixel data were extracted and
analyzed using R package mIFTO (compiled
and developed for AstroPath and available at
https://github.com/AstropathJHU/mIFTO) (48).
Positive pixels (signal) and negative pixels
(noise) were assigned using thresholds de-
termined using inForm's ColocalizationModule.
Tumor cell expression was studied using a
machine learning algorithm to classify pixels
into tissue categories. This was required for
accurate tumor quantification due to the varia-
tion in tumor cell size and the use of a dual
marker (Sox10/S100) cocktail, precluding thres-
holding on a single marker’s intensity.
To compare monoplex IF and chromogenic

staining we used a pixel-based approach. For
the Sox10/S100 stain, the machine learning
algorithm was also used, as described above.
For all other markers, machine learning was
not used for this specific comparison. The
number of positive pixels from chromogenic
staining was considered baseline, and the
percent deviation in positive pixels when using
an IF stain was calculated.
Positive signal from monoplex and multi-

plex IF staining was compared using pixel-
based and cell-based approaches. Potential
changes in marker intensities between the
multiplex and monoplex IF were assessed by
comparing the usable dynamic range of each
epitope, defined as the difference in mean
cell fluorescence intensities of the 95th and
5th percentile per HPF.

Statistical analyses

For staining comparisons between correspond-
ing fields acquired from sequential slides
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paired student t tests were performed and data
were reported as mean ± SEM.

Image acquisition, phenotyping,
and batch-to-batch normalization
Image acquisition

The entire slide was acquired by tiling HPFs
with 20% overlap (Fig. 3A and fig. S6). The
mid-point of the overlaps was used to deter-
mine the boundaries of modified HPFs (Fig.
3B). A flat-field correction for each of the 35
layers was derived from the average of 11,000
HPFs, smoothed by a Gaussian to reduce ef-
fects of outliers (Fig. 3B and fig. S7). Mathe-
matical corrections were also applied for ‘pin
cushion effects’ resulting from lens distortion for
each HPF (Fig. 3B). Fields were then stitched
together using a spring-based model that
eliminates “jitter” from the microscope stage
movement (Fig. 3C and fig. S8).

Tissue annotation

The tumor-stroma boundary was manually
annotated using HALO (Indica Labs) image
analysis software. Areas of necrosis, tissue
folds and other artifacts were excluded from
analysis.

Single-marker phenotyping and associated
quality assurance/quality control (QA/QC)

The inForm software typically assigns pheno-
types to individual cell lineages, e.g., CD8
versus CD163, simultaneously (i.e., ‘Multi-
marker’ phenotyping). ‘Single-marker’ pheno-
typing was also performed, whereby cells were
assigned positive or negative status for each
marker individually. Cell centers were then
used to merge the six individual datasets into
a single Cartesian coordinate system (for ad-
ditional details, see https://github.com/Astro-
pathJHU/MaSS).
The quality of the final phenotyping was

verified by a board-certified pathologist (JMT)
who visually inspected an average of 25,000
phenotyped cells per specimen using a custom
viewer (fig. S10A). Specifically, the 20 high-
est density CD8 HPFs containing at least 60
tumor cells, 50% tissue coverage, and 400 cells
total were selected for each specimen for visual
QA/QC inspection of phenotyping algorithm
performance. A second custom viewer facili-
tated inspection of up to 25 randomly selected
positive and negative cells for eachmarker from
the same HPFs (fig. S10, B to D). A minimum
of 2000 cells displaying each marker was
visually inspected using this second viewer
for each specimen. The custom QA/QC code
for both viewers can be found at https://
github.com/AstropathJHU/MaSS.

Normalization of batch-to-batch variation

A tissuemicroarray (TMA) that includedpunches
from 3 normal spleens and 3 tonsils was run
with eachmultiplex staining batch. The staining

intensities for PD-1 and PD-L1 in the control tis-
sues were used for batch-to-batch normalization.

Computing hardware and
software configurations

Images were acquired using a local desktop
computer associated with the Vectra that was
upgraded to contain two 2TBM.2 NVMe SSDs
allocated as a single drive, for maximum stor-
age and transfer efficiency. The multispectral
image tiles were then transferred from the local
computer to a cluster of 4 servers, dedicated to
processing of the Vectra data. Two of the servers
were configured for computational performance
outfitted with nine 2TB nVME SSDs, 128 GB of
RAM and 24 physical cores. The other two
servers were configured for storage, contain-
ing six 6x6 TB HDDs configured as RAID5
arrays. This allowed a total net usable HDD
capacity of 313.3TB. This study consumed 32.27
TB of this storage capacity at peak.
One computational server was specifically

dedicated to image correction and segmenta-
tion, running multiple virtual machines, each
with its own inForm instances. The interactive
aspects of inForm were overridden using an
automation tool, so they could be executed
as batch processes. The other computational
machine was dedicated to house the database.
One of the storage machines contained the
compressed backups of the raw data. Each
image was compressed individually, to increase
accessibility, using settings in the 7-Zip software
for optimal speed and compression size for the
image files. The final storage server housed the
data during processing.
The intermediate data products are repro-

ducible, and can be discarded throughout or
after processing; leaving minimum storage
requirements for this project around 15 TB
without compression. While our configura-
tion expedited image processing and analysis
by 12- to 15-fold using a lot of parallelism, it is
important to note that the general workflow de-
scribed herein could be executed using a single
computer outfitted with a single inForm license.

Density assessments of cell types by distance to
the tumor-stromal border

The density of specific cell types expressing
PD-1 or PD-L1 was determined relative to the
distance from the tumor-stromal border. PD-
1 intensity groups were defined as negative,
low, medium, and high by dividing the positive
signal for PD-1 into tertiles. To enable compar-
isons between cell types with varying levels of
abundance, a probabilistic density was calculated
by dividing the cell density in each distance bin
by the total surface density of that cell category.

Density assessments for specific cell populations
and association with response to anti-PD-1

The density of specific cell types, including as-
sessments of PD-1 and PD-L1 expression levels

(negative, low, mid, high) were determined
for each specimen (fig. S12), and tested for
an association with response to therapy. The
densities of cells displaying the different PD-1/
PD-L1 expression levels for each cell type were
then compared between responders and non-
responders using a one-sided Wilcoxon rank-
sum test. The rank sum values were converted
into AUC values.
To determine the impact of HPF sampling

on the resultant AUC, an increasing propor-
tion of the tumor microenvironment was as-
sessed in an iterative manner. Field sampling
was performed in one of two ways. (i) CD8+
cell densities were determined for each HPF
and then fields were ranked and included by
order of decreasing CD8+ cell densities in the
hotspot analysis. (ii) Fields were ranked ran-
domly and selected at increasing proportions
(Fig. 5). To avoid bias, 100 randomized order-
ings were generated and an average AUC was
reported at each proportion step. They were
selected randomly for “representative” anal-
ysis. Reported P values are corrected for mul-
tiple comparisons using a Benjamini-Hochberg
correction.
Each feature that showed an associationwith

response by univariate analysis (corrected
P value < 0.05) at 30%hot spotHPFs sampling
and for the whole TME (100% sampling) was
combined into a multivariate model (see data
files S1 to S4 for densities for all 41 features at
30% hot spot sampling and 100% sampling).
Specifically, a binary logistic regression model
was applied to assess the combinatorial ROC
curves and the corresponding AUCs were
calculated to evaluate the prognostic accuracy
of combination of the top 10 features in the
discovery cohort for predicting objective re-
sponse. These same 10 features were then
tested in an independent validation cohort.
A combined model was also developed using
these features for predicting long-term survival
by KaplanMeier analysis. In this combinatorial
model, patients whose samples contained high
densities (top 20%) for any one of the fea-
tures negatively associated with outcomewere
grouped together first, irrespective of other ex-
pressed factors. Next, the remaining patients
were divided between those containing high
densities (top 15%) for any one of the features
positively associated with outcome.

mIF assay for PD-1 expression by
lymphocyte subsets

A six-plex mIF assay for PD-1, CD8, CD4, CD20,
FoxP3, and tumor (Sox10/S100) was developed
and validated on an automated platform (Leica
Bond Rx), according to the principles previously
described. The staining order and conditions
for staining are provided in table S11. This was
used to assess the proportion of PD-1 expres-
sion contributed by individual lymphocyte
subsets to the melanoma TME.
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