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Adoptive Cellular Therapy, ACT, targets cancer cells by
harnessing the immune system but current approaches

are cumbersome...... and scalability limited
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Presentation Notes
Adoptive cell therapy is a promising cancer therapy where a patient’s tumor-specific T cells are expanded ex vivo and then reinfused back into the patient.  Three different version are highlighted in this slide- ETC, Endogenous T cell Threapy, TIL, Tumor Infiltrating T cells, and CAR/TCR based therapy. 

At a high level these three forms have both related and unique aspects associated with each. ETC, T cells and endogenous naturally occurring APCs are isolated from patient-sourced PBMCs. APCs are engineered to express the antigen of interest, then incubated with T cells to expand tumor-specific T cells. (B) TILs may be isolated from an excised tumor and rapidly expanded with IL-2. Tumor-reactive T cells from this pool are then selected for longer term expansion. (C) T cells for TCR and CAR T therapies are derived from patient-sourced PBMCs. T cells are transduced with genes for a tumor specific TCR or CAR, then expanded to large numbers. 

Focus on Endogenous T cell therapy (ETC). ETC seeks to mimic natural antigen-specific T cell responses ex vivo through expansion of rare, circulating tumor-reactive T cells from patients’ peripheral blood, followed by reinfusion of large numbers of autologous tumor-specific T cells into cancer patients (Fig. 1 A).  
Enrichment of tumor-specific T cells can be performed in a number of ways, most commonly through fluorescent-activated cell-sorting (FACS) based on T cell binding to cognate, fluorescently-labelled, and multimerized pMHC molecules known 21 or other commonly available sorting approaches. Expansion of tumor-specific T cells is most commonly performed using autologous APC, antigen presenting cells,  such as dendritic cells that are either pulsed with tumor-specific peptides or transfected with RNA encoding tumor antigens25   

Other common approaches include sorting on T cell activation or inhibitory markers, such as PD-122,23 or CD13724, or immunomagnetic bead-based enrichment25. 
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Why ETC? Sourcing naturally present tumor-specific T
cells from PBMCs presents a number of potential
opportunities for adoptive cellular therapy (ACT)

*  First and foremost, the simplicity and modularity of this approach makes
it amenable to personalization.

The minimal requirements of clinical grade peptide or RNA and patient
PBMCs present few regulatory hurdles or complex pipelines for targeting
specific antigens, allowing for rapid, ad hoc targeting of patient-specific
tumor antigens

The importance of modularity is further highlighted by studies which
have shown optimal antitumor responses may require simultaneous
targeting of multiple tumor antigens

» Additionally, by targeting endogenous and at times naive T cells, ETC
inherently provides flexibility over the memory phenotype of the final T
cell product

 The resulting T cells also tend to be relatively safe, as these naturally
present cells have gone through negative selection.
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First and foremost, the simplicity and modularity of this approach makes it amenable to personalization

Additionally, by targeting naïve T cells, ETC inherently provides flexibility over the memory phenotype of the final T cell product34,35. This is particularly important, as there is significant evidence from mouse models and retrospective analyses of human clinical trials that less differentiated naïve (TN), stem cell memory (TSCM), or central memory (TCM) T cells show significantly greater in vivo persistence and antitumor efficacy compared to more differentiated effector memory (TEM) or terminally differentiated effector cells (TEFF)36,37

Patient preconditioning steps for ETC also tend to be relatively mild, lowering concerns of toxicities from nonmyeloablative lymphodepletion or high doses of IL-2 which are commonly required for other cellular therapies (see section 2.3.1)34,38–40
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Artificial Antigen Presenting Cells, aAPC:
A simplified approach to T cell stimulation
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What are the minimal requirements to selectively stimulate a specific T cells from a universe of diverse universe of various  T cells.  We know these requirement include 
1) a specificity signal delivered through an antigen-HLA complex and 
2) a go-no go- such as B7 interacting with cd28 on the T cell
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Artificial Antigen Presenting Cells, aAPC:
A simplified approach to T cell stimulation

NEW TECHNOLOGY

Ex vivo induction and expansion of antigen-specific
cytotoxic T cells by HLA-Ig—coated artificial
antigen-presenting cells

MATHIAS OELKE', MARCELA V. MAUS?, DOMINIC DIDIANO', CARL H. JUNE®, ANDREAS

Philadelph
‘Department of Hematology/Oncology, Us rsity af Regensburg, Genmany
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Published online 21 April 2003; doi:10.1038/nmB69
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What are the minimal requirements to selectively stimulate a specific T cells from a universe of diverse universe of various  T cells.  We know these requirement include 
1) a specificity signal delivered through an antigen-HLA complex and 
2) a go-no go- such as B7 interacting with cd28 on the T cell
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E+E: Enrichment & Expansion of
aAPC-stimulated T cells

Tumor-
specific
T Cells

Perica et al. ACS Nano, 2015 Jul 28;9(7):6861-71. doi: 10.1021/acsnano.5b02829.
Hickey et al, Nano Lett 2020 Sep 9;20(9):6289-6298. doi: 10.1021/acs.nanolett.0c01511.
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In murine model systems, using nano-aAPC based E+E one sees between 5-15% antigen specific T cells after just one week of culture and these cells can be used in ACT models to treat murine melanoma, B16.F10 tumors
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E+E: Enrichment & Expansion of
aAPC-stimulated T cells
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In murine model systems, using nano-aAPC based E+E one sees between 5-15% antigen specific T cells after just one week of culture and these cells can be used in ACT models to treat murine melanoma, B16.F10 tumors
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In murine model systems, using nano-aAPC based E+E one sees between 5-15% antigen specific T cells after just one week of culture and these cells can be used in ACT models to treat murine melanoma, B16.F10 tumors



CLINICAL CANCER RESEARCH | TRANSLATIONAL CANCER MECHANISMS AND THERAPY

Rapid Expansion of Highly Functional Antigen-Specific T
Cells from Patients with Melanoma by Nanoscale Artificial
Antigen-Presenting Cells

Junya Ichikawa', Tatsuya Yoshida', Ariel Isser’, Andressa S. Laino', Melinda Vassallo', David Woods',
Sojung Kim®, Mathias Oelke®, Kristi Jones®, Jonathan P. Schneck?, and Jeffrey S. Weber'

Ichikawa, Clinical Cancer Research, 2020
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Application to Human CTL: Expansion of Mart-1 and GP-100 specific
CTL from melanoma patients
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anoscale aAPCs can be used to expand highly functional JOHNS HOPKINS
tumor-specific CD8+ T cells from melanoma patients =" meoiciwe

CD8+ T Cells + Nano-aAPC

S Day0 Day 7 Day 14
i : ] 1 MART-1 Tet*
E. }0.01 Al SD&’CDZS T 0.04 1 0.08 cells (%) Cell number Fold change
%1 ynabeads 1 - p0001
| L] | i Lo | * 4 <. ;
: =2l - I el e, o, ——
Enrichment t | | 1 = p.—r.Elm 500 Pr-g_olra
CD8 ] ] ; Y )
Vo1g[ ][] 48[g]| @ &
o e - Kt ’ 1 ]| < £ 1000
L. -7 by T = o
Elute and Culture Positive Fraction 1 - ] ‘ % E
s Fo e °
E + E with 1 =11 | *
| 0.9 ] |1 536 g
D'esc:rd l:egative w' ‘ 2| 1 :! ({b‘gp o ’g’
raction ;: ] 0\\
—— aAPC
— 100, % DCs ET1
2 |-=-DCsET10 _
@ =
2 50 °
o E
=
o 2
‘%_ 04 us H

Peptide conc. (mol/L)

Ichikawa, Clinical Cancer Research, 2020


Presenter
Presentation Notes
This has led our and other labs to design more scalable technologies for Adoptive Cellular Therapies, such as nanoscale artificial antigen-presenting cells or aAPCs composed of iron dextran nanoparticles conjugatd with signal 1, a peptide MHC complex and signal 2, an agonistic anti-CD28 antibody. These nano-aAPCs can be used to enrich and expand highly functional tumor-specific T cells from melanoma patients by several thousand fold in two weeks. Thus far, our work and more generally the field of ACT has focused primarily on treating patients with cytotoxic or CD8+ T cells, which are the immune system’s professional killers.
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Nano-aAPCs can be used to enrich and expand highly functional tumor-specific T cells from melanoma patients by several thousand fold in two weeks. Thus far, our work and more generally the field of ACT has focused primarily on treating patients with cytotoxic or CD8+ T cells, which are the immune system’s professional killers. 
True for Mart-1 and GP-100

Figure S5. Nano-aAPC expanded CD8+ T-cells targeting gp100.
(A) Detection of gp100-specific CD8+ T-cells from a melanoma patient by staining with
gp100/HLA-A*0201 tetramers. Summary of frequency, cell number and fold change of
gp100 Tet+ CD8+ T-cells from 9 melanoma patients. (B) Phenotypic analysis of gp100
Tet+ CD8+ T-cells from 7 melanoma patients. Significance was assessed by Student’s
two-tailed paired t test.


Optimal T Cell Phenotype Consists of Central Memory and
Stem Cell Memory T cells

Central Memory (T.,) and Stem Cell Memory (Ts.m) T-cells represent key anti-tumor T-cells
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Stem Cell Memory T cells

Central Memory (T.,) and Stem Cell Memory (Ts.m) T-cells represent key anti-tumor T-cells
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NEXI-001 Clinical Promise: Restore Normal Donor by Killing Both
Leukemic Blasts and Leukemic Stem Cells Hematopoiesis
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aAPC stimulated T cells can be directed against multiple
AML antigen targets and grown to clinically relevant

numbers
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Summary
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Summary

aAPC directly engage tumor-specific T cells for ACT — does not require
processing and presentation by host DCs and cannot be down-regulated

- Activate and expand both foreign and self tumor-specific T cells

E+E allows for batching: Target multiple tumor-specific antigens
simultaneously minimizing potential for tumor escape

Target naive and memory T cell repertoire
— Results in robust, persistent anti-tumor activity and immunologic memory
Mechanistically, complements other IO approaches, CPI, that break tolerance

Scalable and flexible ‘off-the-shelf’ based approach: Cassette-able components
provide rapid path to new product design and production

Can be used to detect and stimulate T cells from a complex mixture of tumor-
specific peptides: Potential to validate ‘predicted’ neo-antigens in clinical
settings
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The Design Space
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Biomaterials can be used to recapitulate the signals
provided by endogenous antigen presenting cells
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JOHNS HOPKINS

MEDICINE

Goal: in vivo T cell activation
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Artificial Lymph () JOHNS HOPKINS
Node (aLN) pMHC
aCD28
-2+
Co-inject IL-2+AD
aLN and ECM
W
A\ D8+ T
@‘é‘ cells
6 .
Increas;%if:étmatrix Increaés;ctiac;ll-cell Host cell infiltration

26



Potential Collaboration

David Avigan: RO1CA262629 - Personalized Adoptive T-cell Therapy for AML
07/2021 — 06/2026

1)

2)

3)

Developed a personalized cancer vaccine in which patient derived tumor cells
are fused with autologous dendritic cells (DCs), 2) Completed a phase Il
clinical trial in which patients that achieve remission following chemotherapy
undergo serial vaccination with DC/AML fusions.

The DC/AML vaccine can be used as a platform to generate activated
leukemia-specific T cells ex- vivo for adoptive immunotherapy. In this way,
effector cells may be generated that are leukemia-specific, capture tumor
heterogeneity, and are activated ex vivo

In the third aim, we will conduct a Phase | study in which patients with AML
who achieve complete remission will undergo adoptive therapy with vaccine
stimulated T cells.
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Potential Collaboration

David Avigan: RO1CA262629 - Personalized Adoptive T-cell Therapy for AML
07/2021 — 06/2026

1) Developed a personalized cancer vaccine in which patient derived tumor cells
are fused with autologous dendritic cells (DCs), 2) Completed a phase Il
clinical trial in which patients that achieve remission following chemotherapy
undergo serial vaccination with DC/AML fusions.

2) The DC/AML vaccine can be used as a platform to generate activated
leukemia-specific T cells ex- vivo for adoptive immunotherapy. In this way,
effector cells may be generated that are leukemia-specific, capture tumor
heterogeneity, and are activated ex vivo
1) An aAPC or hydrogel-based expansion approach
2) HLA Class I, A201, or Class Il, DR4 or DP4

3) Inthe third aim, we will conduct a Phase | study in which patients with AML
who achieve complete remission will undergo adoptive therapy with vaccine

stimulated T cells.
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Magic Bullets of the Immune System: (&) JOHNS HOPKINS
Tapping CD4+ Cells for ACT
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CD4* T cell-based ACT has demonstrated clinical /&) JOHNS HOPKINS

efficacy
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Presentation Notes
By way of motivation, there have been several clinical studies clearly demonstrating the clinical efficacy of CD4+ ACT
Metastatic Melanoma – NY-ESO-1 DP4 –cassian yee
Epithelial Cancer ERBB2 interacting protein mutation –steven rosenberg—first neoantigen ACT study.
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Presentation Notes
Perhaps even more intriguing is this finding that CD4+ T cells can acquire cytotoxic function similar to CD8+ T cells, and these cytotoxic CD4+ T cells seem to be clinically important in a variety of clinical settings from Hepatocellular carcinoma, bladder cancer+/- anti-PDL1 therapy, are car t cell leukemia (CLL). Two patients 10 years after treatment –majority of cells left are CD4 CTL and highest upregulated genes are cytotoxic.  (UMAP) of CD3+CAR+ gated cells from CyTOF data generated from samples at five time points for each of patient 1 (PT1) and patient 2 (PT2). Each colour represents cells from one patient time point after infusion. b, Protein expression of selected CyTOF markers, revealing a prominent Ki67hi population of CD4+ CAR T cells, as well as a CD4−CD8−
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CD4* T cells play a wide array of helper and
effector roles in the cancer immune response
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Ariel Isser, a former BME graduate student, became very interested in targeting the “much neglected” cousin of CD8+ T cells, the helper or CD4+ T cell, to enhance cancer immune responses. Unlike CD8+ T cells that serve sort of as the special ops—search and destroy, CD4+ T cells serve more as the generals—they engage both the innate and adaptive arms of the immune system, recruiting innate immune cells, providing help to CD8+ T cells to enhance their memory and function, and even directly lysing tumors that express major histocompatibility class ii (MHC II). 
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The next aspect of CD4+ responses I sought to harness was their helper function. As I mentioned earlier, T cell help is a vital part of generation of fully functional CD8+ T cells and yet there is a prominent absence of technologies or approaches to generated “helped” CD8+ T cells, within the cellular therapy world.
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Traditionally, T cell help occurs through cross-presenting dendritic cells type such as Conventional dendritic cell type 1 (cDC1) –where CD4+ T cells “license” the DCs through CD40L/CD40 interactions that leads to DC maturation and upregulation of MHC I and costimulatory molecules—in turn the CD8+ T cells become more memory-like, more functional, and more cytotoxic. That said, an important component of this process is the CD4+-CD8+ cross-talk that occurs in this process, whereby CD4+ T cells provide paracrine cytokine support to CD8+ T cells, when these three cells interact together. As our conventional aAPCs already present high levels of MHC and co-stim, to augment this we designed an aAPC to co-ligates CD4+ and CD8+ T cells and enhance cell-cell crosstalk.

https://www.nature.com/articles/s41467-022-33597-y
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Traditionally, T cell help occurs through cross-presenting dendritic cells type such as Conventional dendritic cell type 1 (cDC1) –where CD4+ T cells “license” the DCs through CD40L/CD40 interactions that leads to DC maturation and upregulation of MHC I and costimulatory molecules—in turn the CD8+ T cells become more memory-like, more functional, and more cytotoxic. That said, an important component of this process is the CD4+-CD8+ cross-talk that occurs in this process, whereby CD4+ T cells provide paracrine cytokine support to CD8+ T cells, when these three cells interact together. As our conventional aAPCs already present high levels of MHC and co-stim, to augment this we designed an aAPC to co-ligates CD4+ and CD8+ T cells and enhance cell-cell crosstalk.

https://www.nature.com/articles/s41467-022-33597-y
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Presenter
Presentation Notes
Traditionally, T cell help occurs through cross-presenting dendritic cells type such as Conventional dendritic cell type 1 (cDC1) –where CD4+ T cells “license” the DCs through CD40L/CD40 interactions that leads to DC maturation and upregulation of MHC I and costimulatory molecules—in turn the CD8+ T cells become more memory-like, more functional, and more cytotoxic. That said, an important component of this process is the CD4+-CD8+ cross-talk that occurs in this process, whereby CD4+ T cells provide paracrine cytokine support to CD8+ T cells, when these three cells interact together. As our conventional aAPCs already present high levels of MHC and co-stim, to augment this we designed an aAPC to co-ligates CD4+ and CD8+ T cells and enhance cell-cell crosstalk.

https://www.nature.com/articles/s41467-022-33597-y
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Combined MHC I/l aAPCs boost the memory phenotype, (&) JOHNS HOPKINS
function, and antitumor activity of transgenic CD8*T cells
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Similar experiment with primed ot-ii and 2c-transgenics specific to kbsiy and presented on b16siy melanoma cells or pmel transgenics-specific dbgp100 and presented on b16f10 melanoma—saw a similar effect on cytotoxicity. 

https://www.nature.com/articles/s41467-022-33597-y
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We also  incorporated this redirected help into our endogenous aapc-based expansion of a variety of cd8 specificities, including to model antigens such as siy and ova as well as melanoma antigen such as trp2 and gp100. Didn’t see much of an effect on proliferation, but did see pretty dramatic differences in cd127 staining, cd44/cd62l central memory skewing, and ifng secretion when cd8 were stimmed with the primed ot-ii. 
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In Transwell assays where the cd4/8 are separated by a 0.4um membrane, we saw no difference. So we looked at secreted cytokines/chemokines with a cytokine array and identified that il-10 and tnfa seemed to be some of the most highly secreted cytokine
Il-10 is interesting –suppressive on myeloid cells but seems to have inflammatory effects on lymphoid cells—turns out heterodimeric—il10ra, il10rb—alpha is high affinity, beta low affinity—stat3 is generally considered more memory formation, stat1 more inflammation. Perhaps getting the pros without the cons since no antigen-presenting cells suppressing here. Susan kaech il10/21 stat3 signalling—memory formation, stat1 important for cd8 acquisition of cytotoxic function.



/! 1. Thrombin 2. Add Excess
/! Cleavage Peptide

Fos/Jun
Zippers
.‘.‘ His Tag
Ky BirA Site
HA 1.7+ HA 1.7~
- CD3
100 == Uniransfecied “
= Transfected DR1HA
ransfecte OR1 CLIP
No Stim.

Counts

T i | rre oy ™ ey e g v

t 0 1 2 3 4 3 4 0 1 3 4
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
HA 1.7-FITC CD69-PE

Isser et al https://www.nature.com/articles/s41467-022-33597-y

€D69" Jurkat T cells (%)

)
HLA Il aAPCs stimulate cognate Jurkat T cells

Fededkk e e e
—
kkk *kk
4 D5 s4kax ¥
1009 D35 sk *kkk =
L4 ’ i *k
. :
o Ce . -
504 % o o] o o o] e©
§ $ $ ? @ﬁj 0180 &
s e
°, o . - I
o
*0 %e;5 oe o e
0d—y T T T T T
«CD3  [50 25 10 5] MNostim
e DR1 (ngfmL)

JOHNS HOPKINS

MEDICINE

HA1T" HALT
Jurkats  Jurkats
aCD3 ® o

DR1HA @ o}

DR1GCLP ® °
Nostim. # Q

41


Presenter
Presentation Notes
So the next question from these mouse studies was how translatable the findings were to activation and expansion of human ag specific t cells. To begin examining this, I generated HLA II aAPCs using a construct adapted from wucherpfennig lab that uses fos-jun dimerization and a thrombin cleavage site that can facilitate peptide exchange. To enhance throughput of targeting, I chose to optimize protcols to perform the thrombin cleavage and peptide exchange directly on the beads. To start with,  I transfected Jurkat cells with the HA1.7 TCR via electroporation, let them incubate overnight, and then stimulated them with DR1 aAPCs that were either exchanged to the flu HA peptide or left unexchanged with CLIP. These stimulations were in turn compared to anti-cd3 non-specific stimulation with use of CD69 as a marker of activation. Since not all of the Jurkat cells expressed the TCR, I could then look at specific vs. non-specific activation. As you can see, anti-cd3 activates jurkats that are either ha1.7+ or negative. In contrast, the DR1 HA beads stimulate only the HA1.7+ jurkat cells, and the clip beads do not activate either. 

https://www.nature.com/articles/s41467-022-33597-y
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We generated HLA II aAPCs using a construct adapted from wucherpfennig lab using a fos-jun dimerization and a thrombin cleavage site that can facilitate peptide exchange. Thrombin cleavage and peptide exchange directly on the beads. This provided motivation to attempt to expand flu specific cd4 t cells from dr4 healthy donors—as you can see the precursor frequency is nearly undetectable. However in il-2 media or il-2,4,6,1b, ifng media (neximmune mix), we get robust proliferation to approximately 30% of the population by day 21 and ~100,000 fold proliferation. The cells are primarily effector memory, secrete th1 cytokines like ifng and tnfa, and display cytotoxic function against lymphoblastoid cell lines, as can be seen from reduction of specifically the cfse high population pulsed with cognate peptide.

https://www.nature.com/articles/s41467-022-33597-y
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