Earlier this fall, we were pleased to host Steve Case and his team from Revolution at FastForward East as his Rise of the Rest tour rolled through town. The day gave Baltimore the opportunity to show off the entrepreneurial spirit of a city determined to capitalize on its innovation assets to create jobs, build community, address social challenges and, ultimately, persevere.

Every day at Johns Hopkins and in Baltimore, our city’s best and brightest push forward, as the entrepreneurs Case met throughout his day in Baltimore can attest. At the end of his tour through Baltimore’s innovation hubs, Case held a pitch competition at which six of the eight participants were affiliated with Johns Hopkins—a reflection of the amazing technologies and ideas generated right here in our labs, classrooms and dorms. In fact, the winning team, Sisu Global Health, which is developing a blood-saving device that can be used in developing countries, went through DreamIt Health Baltimore 2015, which was co-sponsored by Johns Hopkins.

This issue of the JHTV newsletter will give you a small glimpse into the world of innovation at Johns Hopkins. Please read on to learn about Sisu’s product and about other entrepreneurial activities happening here at Johns Hopkins, including a test in development to screen for early-stage ovarian cancer, potential therapies for multiple sclerosis and Lou Gehrig’s disease, and new legal services for our FastForward startups.
Sisu Global Wins $100,000 in Steve Case Pitch Competition

In less than a year, Dreamit Health Baltimore alum Sisu Global Health has gone from nascent startup to winner of one of the most prestigious live pitch competitions Baltimore has ever hosted.

Sisu’s extraordinary ascent is dwarfed only by its mission: to change how health care is administered in developing countries, such as Ghana and Zimbabwe.

“We’re not just throwing another product into the health care marketplace and hoping it sticks,” says Katherine Kirsch, Sisu’s chief marketing officer.

With 80 percent of medical technology designed to care for only 10 percent of the world’s population, Sisu reports, health care systems in emerging economies struggle to serve their populations. Sisu is building a new health care delivery model one device at a time that will work in urban and rural hospitals in developing countries, Kirsch explains.

On Sept. 28, venture capitalist and AOL co-founder Steve Case gave Sisu a nod when he awarded the startup a $100,000 investment at a pitch competition organized as part of his Rise of the Rest tour. Of the large number of Baltimore startups that applied to pitch ideas to Case and a panel of judges, Sisu was one of eight selected and the only one owned by women. It won the competition and the investment from Case’s venture fund, Revolution.

Entrepreneurs Kirsch, Gillian Henker and Carolyn Yarina founded Sisu—named after a Finnish word often used in Michigan’s Upper Peninsula meaning perseverance in the face of adversity, Kirsch explains—in February 2014. Their backgrounds suited the startup perfectly.

As a chemical engineering student at the University of Michigan, CEO Yarina had worked in India developing a centrifuge—a device to separate blood for diagnosis—that can operate with or without electricity.

Sisu chief technology officer Henker had volunteered at major teaching hospitals in Ghana and worked on medical devices and social enterprises while majoring in mechanical engineering at the same university.

And Kirsch, a graduate of Albion College in Michigan with a background in education and public health in low- and middle-income countries, had worked with Yarina to start a nonprofit for the centrifuge.

It wasn’t long before the three combined knowledge and networks to catalyze a big-picture change in how health care is administered in developing countries.

They relocated from Michigan to Baltimore to participate in startup accelerator program Dreamit Health, for which Johns Hopkins was a co-sponsor, in spring 2015 and decided to stay.

“Technological support was easy to find in Michigan, but there wasn’t much experience there in working in the global health arena,” Kirsch says. In Baltimore, they found investors and mentors interested in their work.

“Baltimore is close to Boston and Washington, D.C.,” which are established technology hubs, Kirsch adds. Rental costs for office, lab and living spaces in Baltimore are significantly lower than in Boston and D.C.

Sisu’s first product is the Hemafuse, an easy-to-use device that collects and saves blood pooling inside a patient for later transfusion back into the patient. With the tool, pooled blood isn’t wasted—a critical benefit in parts of the world where blood shortages are common. Blood fills space inside the body, for example, when a person experiences a gunshot wound or pregnancy complication, Kirsch explains.

Henker, Kirsch and Yarina say the Hemafuse, which was tested by clinicians at The Johns Hopkins Hospital and is slated for testing at the University of Zimbabwe early next year, should retail for about $60 to $100 per patient. That’s much cheaper than a blood transfusion, which could cost up to $1,000 per surgery in sub-Saharan Africa.

They’re also continuing to work on the centrifuge and three other products. Because Sisu is a for-profit enterprise, its products can be driven by what customers, rather than donors, want, and it doesn’t need to align with grant distribution calendars.

Henker, Kirsch and Yarina have raised $500,000 in funding so far. Case’s $100,000 investment kicks off a $700,000 seed round to raise money to distribute the Hemafuse in Ghana next year. Sisu still seeks an investor aligned with its mission to fill out the round, Kirsch says.

Earlier this fall, Sisu won the social impact pitch competition at South by Southwest (SXSW) Eco, an environmental conference run by SXSW Inc. And Kirsch presented at Switch Baltimore, a roundtable focused on med-tech innovations, on the first day of Baltimore Innovation Week, just hours before Case’s pitch competition.

Next, Kirsch travels to China to participate in a Grand Challenges meeting, which was co-funded by the Bill & Melinda Gates Foundation. Yarina will visit Jordan to participate in the Open Hands Initiative’s Fellowship for Young Women Entrepreneurs, an entrepreneurship boot camp. Back home, the three will settle into new office space at Impact Hub Baltimore, a new space for social innovation startups set to open later this year.
Although physicians have used the Pap test to detect early-stage cervical cancer for decades, there’s no analogous test on the market to detect early-stage ovarian cancer.

Johns Hopkins startup PapGene plans to change that.

In a specially designed laboratory at the Fast-Forward Homewood innovation hub, PapGene scientists are developing a next-generation DNA sequencing test to look for specific somatic mutations suggesting the presence of ovarian or endometrial cancer cells. Somatic mutations are genetic alterations acquired by cells, and key somatic mutations correlate to different types of cancer, explains Howard Kaufman, PapGene’s CEO.

While the Pap test retrieves cells from the cervix to check for the presence of cervical cancer or its precursor, PapGene’s test takes that same patient sample and looks for mutant DNA shed from cells originating elsewhere in the gynecological tract, including from ovarian or endometrial cancer tumors.

“If a somatic mutation is there, it’s a specific sign that a patient has a gynecological cancer,” says Isaac Kinde, PapGene’s chief scientific officer and a recipient of an M.D. and a Ph.D. in cellular and molecular medicine from The Johns Hopkins University last May.

The Johns Hopkins scientists involved with the original research behind the test found cells with mutant DNA from ovarian and endometrial cancers on the cervix—a surprising discovery, Kaufman says, given the distance the cells had to have traveled from their place of origin.

Those scientists, who filed a patent on their discovery in 2013, included Chetan Bettegowda, assistant professor of neurosurgery and oncology at the Johns Hopkins University School of Medicine; Luiz Diaz Jr., associate professor of oncology at the School of Medicine; Kinde; Kenneth Kinzler, professor of oncology at the School of Medicine; Nickolas Papadopoulos, professor of oncology at the School of Medicine; Bert Vogelstein, Clayton Professor of Oncology and Pathology at the School of Medicine; and Yuxuan Wang, a graduate student at the university pursuing both a medical degree and a doctoral degree in cellular and molecular medicine.

Kinde, Kinzler, Papadopoulos and Vogelstein also filed a patent in 2012 on a DNA sequencing system that detects small percentages of mutations. The system helps surpass a significant barrier to detecting mutations in a commonly collected clinical sample, such as that collected in a Pap test.

Both patents were filed through Johns Hopkins Technology Ventures, and PapGene, which the scientists incorporated in March 2014, received licenses for both technologies to develop a test for early-stage ovarian and endometrial cancers in January 2015. The scientists hired Kaufman, a former senior director of technology assessment and business development for technology development company Hologic Inc., as CEO in fall 2014.

Because PapGene scientists are developing such a sensitive test, they need access to laboratory rooms with different air pressures, and the rooms must be arranged to facilitate ideal workflows and minimize cross-contamination. The Technology Ventures office connected PapGene with the architects, building engineers and on-site contractors building out the FastForward Homewood hub in the Stieff Silver Building to ensure the startup’s lab space was appropriate for its work.

PapGene scientists are planning clinical studies to collect additional samples and demonstrate the usefulness of the test, Kaufman adds. They hope to roll out the test initially to high-risk women—those with a family history of ovarian or endometrial cancer, or who have cells with inherited genetic alterations in their BRCA1 or BRCA2 genes. Eventually, as use of the test spreads and testing costs decrease, the test could be available on a wider scale, Kaufman explains.

In 2015 in the United States, about 14,000 women will die from ovarian cancer and 10,000 from endometrial cancer, according to the National Cancer Institute. Although endometrial cancer is more common, ovarian cancer is more lethal, as it’s often not discovered until reaching an advanced stage, when it’s generally too late for effective treatment.

“The path we’re taking is for early diagnostics,” Kaufman says. “When detected early, most cancers can be cured with the therapies available today—a more promising option than developing new treatments for advanced cancers.”

PapGene has raised $3 million, and it received a Baltimore Business Journal Health Care Innovators Award in June.

NEW JHTV Inventor Portal

Got an invention?

Submitting your invention disclosure is now easier than ever. Johns Hopkins Technology Ventures’ new user-friendly, simplified electronic portal includes fewer questions and forms, making invention disclosures less complex and time-consuming. Anyone with a JHED identification account can access the portal.

For questions or support, contact Tina Preston at 410-516-4561.
A collaboration between pharmaceutical company MedImmune and The Johns Hopkins University is shedding new light on the causes of and potential therapies for multiple sclerosis and Lou Gehrig’s disease, also called amyotrophic lateral sclerosis, or ALS.

Johns Hopkins researchers Peter Calabresi and Jeffrey Rothstein, who are receiving funding from MedImmune through the three-year collaboration, are examining oligodendrocytes—cells that wrap around axons, which are branches of neuron (nerve cell) bodies that relay information from one cell to another.

The oligodendrocytes make myelin, which protects axons in the same way that a plastic covering protects the wires in a set of headphones, explains Calabresi, director of the Division of Neuroimmunology and the Multiple Sclerosis Center.

Additionally, myelin serves to provide nutrients, i.e., energy supply, to the long axons, including the several-foot-long axons that connect the brain with the spinal cord, explains Rothstein, director of the Brian Science Institute and The Robert Packard Center for ALS Research at Johns Hopkins.

But the oligodendrocytes can become diseased in different ways: They can degenerate and cause the axons to lose their myelin “wrapping,” thereby altering cell-to-cell communication, or they can lose the ability to provide energy to neurons. In either case, injury to oligodendrocytes can lead to diseases involving loss of motor control, such as multiple sclerosis and ALS.

Calabresi and Rothstein are working to understand why injury to oligodendrocytes and their myelin wrapping happens and to identify ways in which they “can intervene and induce remyelination,” says Rothstein.

“We hope to understand the signals that turn the oligodendrocytes on and off and to coax these cells into becoming myelin-making cells again,” explains Calabresi. “Injury to oligodendrocytes makes neurons sick and patients not able to function.”

MedImmune is contributing antibody-building technology to support the research being conducted by Calabresi and Rothstein. Antibodies are used to identify specific proteins of interest within tissues, and they can be engineered for therapeutic purposes to block signals that would otherwise be received by receptors on cells, Calabresi explains.

MedImmune also is contributing high-throughput technology, which allows researchers to conduct thousands of processes at once.

Calabresi, Rothstein and their teams bring Johns Hopkins’ expertise in biology to the collaboration. In their laboratories, they model the antibodies built at MedImmune. “We speed things up in the discovery process,” Rothstein says.

Calabresi’s and Rothstein’s teams work synergistically—Calabresi’s focuses on multiple sclerosis, and Rothstein’s studies ALS and related conditions—but they share a common interest in oligodendrocytes as a key to developing therapies for conditions like progressive multiple sclerosis, which does not have an FDA-approved therapy. (The intermittent form of the disease, on the other hand, does.) So far, they’ve identified two novel pathways by which oligodendrocytes may be stimulated.

“What’s fascinating is when you find a commonality, a cross-fertilization of ideas sometimes leads to breakthroughs,” Calabresi says.

“ ‘You learn from other people and find that some of the pathways your lab is studying can have applications in other labs, and vice versa.’

Johns Hopkins-MedImmune Collaboration Focuses on Chronic Multiple Sclerosis Causes and Therapies

“Johns Hopkins-MedImmune Collaboration Focuses on Chronic Multiple Sclerosis Causes and Therapies”

Technology Ventures
Now Offering Office Hours at Homewood

Need commercialization advice at Homewood for your technologies?

Help is on the way: Johns Hopkins Technology Ventures now holds office hours on Johns Hopkins’ Homewood campus to make its commercialization services more accessible to entrepreneurs and researchers who work or study at that location.

Its intellectual property and technology licensing groups are at Croft Hall, room 126, every Thursday from 9 a.m. to 5 p.m. for office hours, no appointment required. Meet the Technology Ventures staff, discuss upcoming developments, review the progress of current inventions, and inquire about other matters related to invention disclosure, intellectual property management and commercialization.
JHTV Hires New Director, Associate Director for FastForward and New Student Venture Coordinator

Brian Stansky, FastForward’s new director, served as interim director of FastForward in the two months before his appointment and as a FastForward mentor-in-residence for more than a year. In these roles, he witnessed firsthand the innovations and technologies in development across Johns Hopkins as well as the challenges and opportunities facing entrepreneurs and startups. He also gained the trust and admiration of colleagues, faculty members and staff members, who see him as a partner who gets things done.

Previously, Stansky served for 13 years as managing director of Integral Capital Partners and for 10 years in various research and portfolio management positions at T. Rowe Price. From March 1997 to January 2000, Stansky was portfolio manager for the New Age Media Fund and the T. Rowe Price Media and Telecommunications Fund. He was also portfolio manager of the T. Rowe Price Health Sciences Fund from February 1998 to January 2000.

A CFA charterholder, he holds a bachelor’s degree in accounting from Boston College and a master’s degree in finance and applied economics from the Massachusetts Institute of Technology Sloan School of Management.

Continued on page 8

FastForward, which provides mentoring, funding and space for startups, are critical to the success of the local innovation ecosystem. While in Baltimore, Case also visited Impact Hub, Betamore, Zero Fox, OrderUp, digital marketing startup R2integrated and the headquarters of Under Armour, Baltimore’s best-known startup.

At the end of the afternoon, Case hosted a pitch competition with a $100,000 investment prize from Revolution, his venture capital firm, at the Baltimore Museum of Industry. Six of the eight local startups selected to pitch ideas to Case and a panel of judges were directly affiliated with Johns Hopkins. They included:

- **ShapeU**, which is developing data-driven solutions to personal training performed in groups
- **Sisu Global Health**, a medical device company for emerging markets, including those in sub-Saharan Africa
- **Edessa**, which is developing a scalable, automated hand-washing system that standardizes the hand-washing process
- **Sonavex Surgical**, which is developing a system that detects blood clots before they can cause morbid surgical failures
- **Proscia**, a digital health company focused on bringing image analysis and big data capabilities to pathology
- **PapGene**, which is developing a system that can detect early-stage ovarian cancer

One of those six, Sisu Global Health, which participated in DreamIt Health Baltimore 2015, won the competition.

Case’s visit to Baltimore coincided with the fourth annual Baltimore Innovation Week, held from Sept. 24 through Oct. 3. Organized by technology news network Technical.ly, the celebration of Baltimore’s technology and innovation industries included dozens of events, from innovation summits, hackathons and a family-friendly Robopalooza to tech breakfasts, happy hours, a startup soiree and an entrepreneur boot camp, including Case’s pitch competition and Switch Baltimore, a roundtable focused on med-tech innovations.

The week and Case’s stop in Baltimore highlighted the city’s burgeoning role in the innovation industry. Johns Hopkins Technology Ventures strengthens that role by fostering startups—16 in fiscal year 2015 alone—from the very earliest stages of formation. The numerous innovation hubs and tech companies in formation and the many life-changing discoveries in development suggest Baltimore is on the right track to becoming one of the world’s top tech cities.

Continued from page 1

medical faculty and CEO of Johns Hopkins Medicine, local, state and federal legislators; and Baltimore business owners and investors. Afterward, Case toured the hub, speaking with FastForward entrepreneurs, including Nick Culbertson and Robert Lord, co-founders of Protenus, which recently signed a five-year contract with the Johns Hopkins Health System to provide patient privacy protection software to Johns Hopkins affiliates.

This was Case’s fourth Rise of the Rest tour, an event that takes him to five U.S. cities in five days to meet with entrepreneurs and startups and to tour innovation hubs in emerging startup ecosystems. Case believes these cities, which are sometimes overlooked by investors, are full of talent and technology and have the potential to drive economic development and investment returns. After Baltimore, Case visited Philadelphia; Buffalo, New York; Manchester, New Hampshire; and Portland, Maine.

Case says startups are risky and entrepreneurs struggle, but they create jobs. The Rise of the Rest tour celebrates the role that entrepreneurs play in building communities. He notes that for startups to take off, however, they need mentoring and capital. Innovation hubs, like Johns Hopkins’
Good News: Immunomic Therapeutics Signs $300M Licensing Agreement; Cardioxyl Pharmaceuticals Acquired by Bristol-Meyers Squibb; PGDx Raises $21M; More

Immunomic Therapeutics, Inc., a Hopkins startup formed in part to commercialize the LAMP-vax technology, developed by Johns Hopkins University School of Medicine researchers, signed a $300 million worldwide licensing agreement in October with Astellas Pharma to develop treatment for a wide range of allergic diseases, including peanut allergies. This is the largest deal ever to come out of Johns Hopkins Technology Ventures.

The researchers who developed the LAMP-vax technology included J. Thomas August, professor at the Johns Hopkins University School of Medicine’s Department of Pharmacology.

Cardioxyl Pharmaceuticals, a Johns Hopkins spinoff, is to be acquired by Bristol-Myers Squibb, the companies announced in early November. The transaction includes upfront and near-term milestone payments of up to $300 million and potential additional consideration of up to $1.775 billion upon achievement of certain development, regulatory and sales milestones.

Cardioxyl—founded by David Kass, Johns Hopkins University School of Medicine professor of medicine, biological engineering and cardiology; Nazareno Paolocci, assistant professor of medicine in the university’s cardiology division; and John Toscano, chemistry professor at the university—focuses on the discovery and development of novel therapeutic agents for the treatment of cardiovascular disease.

The acquisition will give Bristol-Myers Squibb full rights to Cardioxyl’s lead asset, CXL-1427, which is currently in Phase 2 clinical development as an intravenous treatment for acute decompensated heart failure. The transaction is expected to close by the end of 2016.

Personal Genome Diagnostics (PGDx)—founded in 2010 by Luis Diaz Jr., associate professor of oncology at the Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, and Victor Velculescu, co-director of cancer biology and professor of oncology at the cancer center—announced in October that it has raised $21.4 million in a Series A funding round led by global venture capital firm New Enterprise Associates. Diaz and Velculescu are pioneers in cancer genome sequencing and liquid biopsy technologies, and PGDx has successfully commercialized these approaches into novel clinical and investigative products and services. PGDx is located in Baltimore and has 63 employees at its Canton headquarters.

Auris Surgical Robotics—a Johns Hopkins startup developing a robotic microsurgical system designed specifically for ophthalmic surgery—recently announced it has raised $150 million in a new financing round. Auris was founded in 2011 on research developed in the laboratory of Russell Taylor, a professor at the Johns Hopkins Whiting School of Engineering Department of Computer Science.

Protenus—founded in 2014 by Nick Culbertson and Robert Lord, then students at the Johns Hopkins University School of Medicine—signed a five-year customer contract with the Johns Hopkins Health System in October to construct a digital platform to protect the privacy of health records across the health system. The platform will detect Health Insurance Portability and Accountability Act violations, recognize when an electronic medical record is accessed by someone who doesn’t have authority to see it, and identify the clinical context of a breach. Protenus was part of the DreamIt Health Baltimore 2015 cohort, which was co-sponsored by Johns Hopkins.

Circulomics—founded by Kelvin Liu, who holds a doctoral degree in biomedical engineering from The Johns Hopkins University—received a $1.5 million Phase 2 Small Business Innovation Research grant in October from the National Institutes of Health and the National Institute of General Medical Sciences to create a portfolio of DNA/RNA extraction products based on Circulomics’ Nanobind DNA/RNA extraction technology. Circulomics received the award on top of a $1.5 million grant it received in May, bringing its total funding to $4.3 million.

MERIT, a member of the 2013-2014 Social Innovation Lab cohort, was awarded the $1 million 21st Century Community Learning Centers Grant from the Maryland State Department of Education in October. MERIT, led by Johns Hopkins medical student Tyler Mains, aims to eliminate health care disparities by transforming under-represented high school students into health care leaders. With this grant, MERIT leaders say it can support more than 200 Baltimore students by 2018.

A group of Johns Hopkins biomedical engineering undergraduate students who invented SpiroSense, a portable spirometer device that can assess pulmonary function, received an honorable mention for excellence in design at the 2015 BMEStart Competition in September. In June, Tremtex, a Johns Hopkins team of graduate biomedical engineering students, took second place and won the TREAT Prize in the 2015 BMEIdea Competition for its STIMband electrical stimulation device to help Parkinson’s disease patients manage debilitating motor symptoms.

Several Johns Hopkins innovators took home awards at Technical.ly’s third annual Baltimore Innovation Awards in October:

- Christy Wyskiel, senior adviser to the president of The Johns Hopkins University, received the “Silo Breaker Award” for her efforts in economic development and technology commercialization across the...
Baltimore region.

- Hal Weaver, a Johns Hopkins University Applied Physics Laboratory scientist and a professor of physics and astronomy at the Johns Hopkins University Krieger School of Arts and Sciences, was named “Scientist of the Year.”
- Tissue Analytics—a Johns Hopkins startup developing a mobile wound imaging and diagnostic tool—won “Best Web/Mobile Product of the Year.” Tissue Analytics was founded by Josh Budman and Kevin Keenahan while graduate students at the Johns Hopkins Whiting School of Engineering’s Center for Bioengineering Innovation and Design.

In October, Maryland newspaper The Daily Record selected Ami Gadhia, portfolio director in Johns Hopkins Technology Ventures’ Technology Licensing division, as one of its 2015 “Leading Women.” The newspaper’s panel of judges selected 50 women to receive the honor out of more than 100 nominees. Launched in 2010, the “Leading Women” awards program recognizes Maryland women 40 years of age or younger for their tremendous accomplishments and commitment to community service and inspiring change.

Johns Hopkins-Microsoft Collaboration Revamps Patient Safety Technology Solution Project Emerge

A digital technology solution for managing data from myriad devices monitoring a single patient is about to get a lot more sophisticated, making it an even better tool for ensuring a patient’s well-being during a hospital stay.

That original technology is called Project Emerge, and it uses data from patient monitoring devices to restructure a hospital’s workflow in efforts to eliminate the most common causes of preventable harm and promote better patient outcomes.

While most efforts to improve safety focus on one harm, Project Emerge seeks to eliminate all harms, including medical complications, such as blood clots and pneumonia, as well as emotional harms, like a lack of respect and dignity. The Johns Hopkins Armstrong Institute for Patient Safety and Quality, the Johns Hopkins University Applied Physics Laboratory and the University of California, San Francisco, collaborated to develop and test Project Emerge’s initial prototype, which was funded by the Gordon and Betty Moore Foundation.

Now, the Johns Hopkins University School of Medicine is teaming up with Microsoft to revamp the prototype as a more advanced, cloud-based system for use in intensive care units.

For the revamp, Johns Hopkins will supply clinical expertise, while Microsoft will provide advanced technologies, including its Azure cloud platform and services, as well as software development expertise. Using Azure, the improved solution will collect and integrate all data from monitoring equipment and information systems.

The foundation of Project Emerge is a tablet application that coordinates and integrates information from several modern devices and provide critical analytics, computing, database, mobility, networking, storage and Web functions. The final product will allow physicians to see trends in a patient’s care in one centralized location and let them access critical patient information from any hospital-approved Windows device.

“Today’s intensive care patient room contains anywhere from 50 to 100 pieces of medical equipment developed by different manufacturers that rarely talk to one another,” says Peter Pronovost, senior vice president of patient safety and quality for Johns Hopkins Medicine and director of the Armstrong Institute. “We are excited to collaborate with Microsoft to bring interoperability to these medical devices, to fully realize the benefits of technology and provide better care to our patients and their families. By combining teamwork with technology designed to meet patients’ and clinicians’ needs, we can make care safer, less expensive and more joyful.”

This initiative is one of several collaborations between the two organizations designed to foster innovative, health-based technologies. Earlier this year, Microsoft became a sponsor of FastForward, Johns Hopkins’ innovation hub. Johns Hopkins also recently joined Microsoft’s Partner Network, which provides enhanced services to the university.

“Collaborating with Microsoft on multiple fronts will provide mutually beneficial opportunities that can change the face of the health information technology landscape,” says Christy Wyskiel, senior advisor to the president of The Johns Hopkins University and head of Johns Hopkins Technology Ventures. “I look forward to harnessing these opportunities and seeing many positive outcomes from our relationship.”

“Johns Hopkins and Microsoft share a common vision of providing better care to more people,” says Michael Robinson, vice president of U.S. health and life sciences at Microsoft. “Through our joint work, Johns Hopkins and Microsoft will empower health professionals with easy-to-consume, data-driven insights, allowing them to focus more on patients and less on technology and process.”

Johns Hopkins and Microsoft plan to scale the project quickly, with pilot projects estimated to begin in 2016.

Nina Urban, FastForward’s new associate director, served most recently as acting CEO of General Genomics, a spinoff of the Georgia Institute of Technology with a novel approach to protein engineering. Before that, she spent five years catalyzing entrepreneurship at the Georgia Institute of Technology serving in a variety of roles, including director of the Emory University/Georgia Institute of Technology Coulter Translational Partnership and director of the Advanced Technology Development Center (ATDC), Georgia’s technology incubator.

At ATDC, Urban restructured the incubator around a new entrepreneurs-in-residence program and initiated Industry Connect, a program in which large companies with a presence in Georgia are introduced to relevant startups to accelerate business-to-business deals. She also co-directed the Georgia Institute of Technology’s new accelerator, Flashpoint, and oversaw the school’s early role in the National Science Foundation’s Innovation Corps program.

Before that, Urban served for 10 years as CEO of Zygogen, an Atlanta-based biotechnology company. She has also worked in drug discovery, biotechnology consulting and business development roles for several organizations in Massachusetts, southern California and North Carolina.

Urban holds a bachelor’s degree in social and behavioral sciences from The Johns Hopkins University, a master’s degree in molecular and cellular biology from Harvard Medical School, and a master’s degree in business administration from Duke University’s Fuqua School of Business.

As Johns Hopkins Technology Ventures’ new student venture coordinator, Kasim Ahmad works with undergraduate and graduate student entrepreneurs who either have founded a company or are in the process of forming one. He initiates collaborations and knowledge sharing between student entrepreneurs, connects the students with startup and entrepreneurship programs at Johns Hopkins and in the greater Baltimore startup community, and helps the students navigate the process of forming a new company.

Ahmad, who holds a bachelor’s degree in business administration from the University of Cincinnati, is the founder of Waygr, a mobile app that helps users place and keep track of sports bets made with friends, and co-founder and chief operating officer of Zooted Delivery LLC, a startup that lets users order food for delivery from Cincinnati restaurants that don’t offer delivery service. Ahmad came to FastForward as a Venture for America fellow.